×

Continuous norms on locally convex strict inductive limit spaces. (English) Zbl 0571.46003

Let \((E_ n)_{n\in {\mathbb{N}}}\) be a strict inductive sequence of locally convex spaces \(E_ n\) each admitting a continuous norm. The author studies the question whether the inductive limit \(E=_{n\to}E_ n\) admits a continuous norm. He proves a necessary and sufficient condition in terms of a concordance property of the continuous norms on the spaces \(E_ n\), which is satisfied e.g. if each \(E_ n\) has the countable- neighbourhood property. Furthermore he gives the following counterexample:
There exists a nuclear Fréchet space (G,\(\tau)\) with an increasing sequence of closed subspaces \(E_ n\), each having a continuous norm but the strict inductive limit \(E=_{n\to}(E_ n,\tau |_{E_ n})\) does not admit a continuous norm. It turns out that the (FN)-spaces \(E_ n\) do not have the bounded approximation property and that E does not have a Schauder basis.
Reviewer: R.Meise

MSC:

46A13 Spaces defined by inductive or projective limits (LB, LF, etc.)
46A11 Spaces determined by compactness or summability properties (nuclear spaces, Schwartz spaces, Montel spaces, etc.)
46M40 Inductive and projective limits in functional analysis
46A04 Locally convex Fréchet spaces and (DF)-spaces
41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)

References:

[1] Bessaga, C.: An Example Related to the Multi-Norm Geometry of Fréchet-Spaces. Vogt’s Properties. Uni. Warszawa Inst. Mat. Preprint 4/82
[2] Dierolf, S., Floret, K.: Über die Fortsetzbarkeit stetiger Normen. Archiv d. Math.35, 149-154 1980 · Zbl 0415.46001 · doi:10.1007/BF01235333
[3] Dineen, S.: Complex Analysis in Locally Convex Spaces. North Holland Math. Studies57, 1981 · Zbl 0484.46044
[4] Dubinsky Ed.: The Structure of Nuclear Fréchet-Spaces. Lecture Notes Math.720 Berlin, Heidelberg, New York: Springer 1979 · Zbl 0403.46005
[5] Dubinsky, Ed., Vogt, D.: Fréchet-Spaces With Quotients Failing the Bounded Approximation Property. Preprint 1983 · Zbl 0633.46003
[6] Floret, K.: Folgenretraktive Sequenzen lokalkonvexer Räume. J. reine u. angew. Math.259, 65-85 (1973) · Zbl 0251.46003 · doi:10.1515/crll.1973.259.65
[7] Floret, K.: Some Aspects of the Theory of Locally Convex Inductive Limits; in: Functional Analysis, Surveys and Recent Results II (ed. K.D. Bierstedt and B. Fuchssteiner). North Holland Math. Studies38, 205-237 (1980)
[8] Floret, K.: Norms and Metrics on Strict Inductive Limits. To appear in: Proc. 14{\(\deg\)} Coll. SBM Poços de Caldas 1983 · Zbl 0526.46008
[9] Floret, K.: Fréchet-Montel-Spaces Which Are Not Schwartz-Spaces. To appear in: Portug. Math.42 (1984) · Zbl 0551.46002
[10] Floret, K., Moscatelli, V.B.: On Bases in Strict Inductive and Projective Limits of Locally Convex Spaces. To appear in: Pacific J. Math. · Zbl 0526.46009
[11] Guelfand, I.M., Chilov, G.E.: Les Distributions, tome 2: espaces fondamentaux. Paris: Dunod 1964 · Zbl 0143.36203
[12] Jarchow, H.: Locally Convex Spaces. Stuttgart: Teubner 1981 · Zbl 0466.46001
[13] Keim, D.: Induktive und projektive Limiten mit Zerlegung der Einheit. Manuscr. Math.10, 191-195 (1973) · Zbl 0261.46066 · doi:10.1007/BF01475041
[14] de Moraes, L.A.: Holomorphic Functions on Strict Inductive Limits. Result. d. Math.4, 201-212 (1981) · Zbl 0475.46035
[15] Vogt, D.: An Example of a Nuclear Fréchet-Space Without the Bounded Approximation Property. Math. Zeitschr.182, 265-267 (1983) · Zbl 0488.46002 · doi:10.1007/BF01175629
[16] de Wilde, M.: Limites inductives d’espaces linéaires seminormés. Bull. Soc. Roy. Sc. Liège32, 476-484 (1963) · Zbl 0119.09904
[17] de Wilde, M.: Inductive Limits and Partition of Unity. Manuscr. Math.5, 45-58 (1971) · Zbl 0214.12503 · doi:10.1007/BF01397608
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.