×

\(\mathcal {E}_\infty \) ring spectra and elements of Hopf invariant 1. (English) Zbl 1401.55010

In this paper, the author constructs and studies a family of \(2\)-local \(E_{\infty}\) Thom spectra \(M_{j_1}, M_{j_2}, M_{j_3}\). They are shown to be equivalent to reduced free commutative \(S\)-algebras on certain CW-spectra built by attaching cells along Hopf invariant \(1\) elements. It is pointed out that the latter CW-spectra also appear in work of M. Behrens et al. [“On the ring of cooperations for 2-primary connective topological modular forms”, Preprint, arXiv:1501.01050]. The author’s computation of the homology of these Thom spectra as \(\mathcal A_*\)-comodule algebras motivates his conjecture that \(M{j_2}\) is a wedge of \(kO\)-module spectra and that \(M_{j_3}\) is a wedge of \(\text{tmf}\)-module spectra.

MSC:

55P43 Spectra with additional structure (\(E_\infty\), \(A_\infty\), ring spectra, etc.)
55P42 Stable homotopy theory, spectra

References:

[1] Adams, J.F.: Stable Homotopy and Generalised Homology. University of Chicago Press, Chicago (1974) · Zbl 0309.55016
[2] Adams, J.F., Priddy, S.B.: Uniqueness of \[B\] BSO. Math. Proc. Camb. Philos. Soc. 80, 475-509 (1976) · Zbl 0338.55011 · doi:10.1017/S0305004100053111
[3] Ando, M., Hopkins, M., Rezk, C.: Multiplicative orientations of \[KO\] KO-theory and of the spectrum of topological modular forms. http://www.math.uiuc.edu/mando/papers/koandtmf.pdf (2010) · Zbl 1055.55007
[4] Bahri, A.P., Mahowald, M.E.: A direct summand in \[H^*(M{\rm O}\langle 8\rangle,\mathbb{Z}_2)H\]∗(MO⟨8⟩,Z2). Proc. Am. Math. Soc. 78, 295-298 (1980) · Zbl 0436.57014
[5] Bailey, S.M.: On the spectrum \[b{\rm o}\mathit{\wedge \rm tmf}\] bo∧tmf. J. Pure Appl. Algebra 214(4), 392-401 (2010) · Zbl 1188.55005 · doi:10.1016/j.jpaa.2009.06.005
[6] Baker, A.: Husemoller-Witt decompositions and actions of the Steenrod algebra. Proc. Edinb. Math. Soc. (2) 28, 271-288 (1985) · Zbl 0558.55012
[7] Baker, A.: Calculating with topological André-Quillen theory, I: homotopical properties of universal derivations and free commutative \[SS\]-algebras (2012). arXiv:1208.1868 (v5+) · Zbl 1179.55006
[8] Baker, A.: BP: close encounters of the \[{\cal{E}}_{\infty }\] E∞ kind. J. Homotopy Relat. Struct. 92, 257-282 (2014) · Zbl 1314.55001
[9] Baker, A.: Power operations and coactions in highly commutative homology theories. Publ. Res. Inst. Math. Sci. Kyoto Univ. 51, 237-272 (2015) · Zbl 1351.55014
[10] Baker, A., Clarke, F.W., Ray, N., Schwartz, L.: On the Kummer congruences and the stable homotopy of BU. Trans. Am. Math. Soc. 316, 385-432 (1989) · Zbl 0709.55012
[11] Baker, A., Gilmour, H., Reinhard, P.: Topological André-Quillen homology for cellular commutative \[SS\]-algebras. Abh. Math. Semin. Univ. Hambg. 78(1), 27-50 (2008) · Zbl 1179.55006 · doi:10.1007/s12188-008-0005-9
[12] Baker, A.J., May, J.P.: Minimal atomic complexes. Topology 43(2), 645-665 (2004) · Zbl 1055.55007 · doi:10.1016/j.top.2003.09.004
[13] Behrens, M., Ormsby, K., Stapleton, N., Stojanoska, V.: On the ring of cooperations for \[22\]-primary connective topological modular forms (2015). arXiv:1501.01050 · Zbl 1444.55004
[14] Bruner, R.R., May, J.P., McClure, J.E., Steinberger, M.: \[H_\infty H\]∞ ring spectra and their applications. In: Lect. Notes Math. vol. 1176 (1986) · Zbl 0585.55016
[15] Cohen, F.R., Davis, D.M., Goerss, P.G., Mahowald, M.E.: Integral Brown-Gitler spectra. Proc. Am. Math. Soc. 103, 1299-1304 (1988) · Zbl 0669.55004 · doi:10.1090/S0002-9939-1988-0955026-0
[16] Douglas, C.L., Francis, J., Henriques, A.G., Hill, M.A.: Topological modular forms. Math. Surv. Monogr. 201 (2015). (Based on the Talbot workshop, North Conway, NH, USA, March 25-31, 2007) · Zbl 1304.55002
[17] Elmendorf, A.D., Kriz, I., Mandell, M.A., May, J.P.: Rings, modules, and algebras in stable homotopy theory. Math. Surv. Monogr. 47 (1997). (With an appendix by M. Cole) · Zbl 0894.55001
[18] Goerss, P.G., Jones, J.D.S., Mahowald, M.E.: Some generalized Brown-Gitler spectra. Trans. Am. Math. Soc. 294, 113-132 (1986) · Zbl 0597.55006 · doi:10.1090/S0002-9947-1986-0819938-3
[19] Harada, M., Kono, A.: Cohomology mod \[22\] of the classifying space of \[{\rm Spin}^c(n)\] Spinc(n). Publ. Res. Inst. Math. Sci. 22, 543-549 (1986) · Zbl 0627.55011 · doi:10.2977/prims/1195177851
[20] Hill, M.A.: Cyclic comodules, the homology of \[j\] j, and \[j\] j-homology. Topol. Appl. 155, 1730-1736 (2008) · Zbl 1169.55004 · doi:10.1016/j.topol.2008.05.013
[21] Kochman, S.O.: Homology of the classical groups over the Dyer-Lashof algebra. Trans. Am. Math. Soc. 185, 83-136 (1973) · Zbl 0271.57013 · doi:10.1090/S0002-9947-1973-0331386-2
[22] Lance, T.: Steenrod and Dyer-Lashof operations on \[BU\] BU. Trans. Am. Math. Soc. 276, 497-510 (1983) · Zbl 0522.55016
[23] Lawson, T., Naumann, N.: Strictly commutative realizations of diagrams over the Steenrod algebra and topological modular forms at the prime \[22\]. Int. Math. Res. Not. IMRN 10, 2773-2813 (2014) · Zbl 1419.55011
[24] Liulevicius, A.: Notes on homotopy of Thom spectra. Am. J. Math. 86, 1-16 (1964) · Zbl 0173.25802 · doi:10.2307/2373032
[25] Liulevicius, A.: Homology comodules. Trans. Am. Math. Soc. 134, 375-382 (1968) · Zbl 0169.54502 · doi:10.1090/S0002-9947-1968-0251720-X
[26] Margolis, H.R.: Spectra and the Steenrod algebra. In: Modules Over the Steenrod Algebra and the Stable Homotopy Category, North-Holland (1983) · Zbl 0552.55002
[27] May, J.P.: A general algebraic approach to Steenrod operations. Lect. Notes Math. 168, 153-231 (1970) · Zbl 0242.55023 · doi:10.1007/BFb0058524
[28] Milnor, J.W., Moore, J.C.: On the structure of Hopf algebras. Ann. Math. (2) 81, 211-264 (1965) · Zbl 0163.28202
[29] Montgomery, S.: Hopf algebras and their actions on rings. In: CBMS Regional Conference Series in Mathematics, vol. 82 (1993) · Zbl 0793.16029
[30] Pengelley, D.J.: The \[A\] A-algebra structure of Thom spectra: \[MSO\] MSO as an example. In: CMS Conf. Proc. Current Trends in Algebraic Topology, Part 1 (London, Ont., 1981), vol. 2, pp. 511-513 (1982) · Zbl 0627.55011
[31] Pengelley, D.J.: The mod two homology of \[MSO\] MSO and \[MSU\] MSU as A comodule algebras, and the cobordism ring. J. Lond. Math. Soc. 2(25), 467-472 (1982) · Zbl 0458.55003 · doi:10.1112/jlms/s2-25.3.467
[32] Pengelley, D.J.: \[H^*(M{\rm O}\langle 8\rangle; \,\mathbb{Z}/2)H\]∗(MO⟨8⟩;Z/2) is an extended \[A^*_2\] A2∗-coalgebra. Proc. Am. Math. Soc. 87, 355-356 (1983) · Zbl 0517.55012
[33] Ravenel, D.C.: Complex cobordism and stable homotopy groups of spheres. In: Pure and Applied Mathematics, vol. 121. Academic Press, New York (1986) · Zbl 0608.55001
[34] Stong, R.E.: Determination of \[H^*(BO(k,\ldots ), Z_2)H\]∗(BO(k,…),Z2) and \[H^*(BU(k,\ldots ), Z_2)H\]∗(BU(k,…),Z2). Trans. Am. Math. Soc. 107, 526-544 (1963) · Zbl 0116.14702
[35] Stong, R.E.: Notes on cobordism theory. In: Mathematical Notes. Princeton University Press, Princeton and University of Tokyo Press, Tokyo (1968) · Zbl 0181.26604
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.