×

A fractal-like algebraic splitting of the classifying space for vector bundles. (English) Zbl 0666.55012

All homology is with Z/2 coefficients. Recall that \(A_ n\) is the subalgebra of the mod 2 Steenrod algebra, A, generated by the first \(2^ n\) squares. \(A_ 0\subset A_ 1\subset A_ 2\subset...\subset A\) forms an ascending filtration of A. Let \(B0<\phi (n)>\) be the n-th distinct connective cover of BO. Let \(B_ n\) be the image of \(H_*BO<\phi (n)>\to H_*BO\). \(B_ 0=H_*BO\supset B_ 1=H_*BSO\supset B_ 2=H_*BSpin\supset B_ 3=H_*BO<8>..\). forms a descending filtration of \(H_*BO\). The authors give new polynomial generators \(u_ i\) for \(H_*BO=Z/2[u_ 1,u_ 2,...]\) which enjoy nice properties with respect to the \(A_ n\) actions on the \(\{B_ n\}\) filtration. Specifically: \(B_ 1=Z/2[u^ 2_ 1,u^ 2_ 2,u_ 3,u^ 2_ 4,u_ 5...]\); \(B_ 2=Z/2[u^ 4_ 1,u^ 4_ 2,u^ 2_ 3,u^ 4_ 4,u^ 2_ 5,u^ 2_ 6,u_ 7,u^ 4_ 8,...]\); \(B_ 3=Z/2[u^ 8_ 1,u^ 8_ 2,u^ 4_ 3,...]\). (The exponents of the \(u_ i\) depend on i’s dyadic expansion and on the size of i with respect to n.) An important subalgebra of \(H_*BO\) which slices across the \(B_ n's\) is \(H_*\Omega^ 2S^ 3=Z/2[u_ 1,u_ 3,u_ 7,...]\). F. Cohen, Th. J. Lada and J. P. May: The homology of iterated loop spaces [Lect. Notes Math. 533 (1976; Zbl 0334.55009)] gave an algebra grading on \(H_*\Omega^ 2S^ 3\) yielding an A-module splitting of \(H_*\Omega^ 2S^ 3\) into what are now recognized as Brown-Gitler modules. The authors’ new generators allow them to extend Cohen’s grading (doubled) to an algebra grading of \(H_*BO\). When this extended grading is restricted to \(B_ n\), it is \(A_ n\)-invariant; this leads to an \(A_ n\)-splitting of \(B_ n\). Hence the smaller pieces of \(H_*BO\) split over larger pieces of A. As its title indicates, this work is encapsulated in the ideas of fractal technology.
Reviewer: D.C.Johnson

MSC:

55R40 Homology of classifying spaces and characteristic classes in algebraic topology
55R45 Homology and homotopy of \(B\mathrm{O}\) and \(B\mathrm{U}\); Bott periodicity
57R90 Other types of cobordism
57T05 Hopf algebras (aspects of homology and homotopy of topological groups)
55N15 Topological \(K\)-theory
55P42 Stable homotopy theory, spectra

Citations:

Zbl 0334.55009
Full Text: DOI

References:

[1] Andrew Baker, Husemoller-Witt decompositions and actions of the Steenrod algebra, Proc. Edinburgh Math. Soc. (2) 28 (1985), no. 2, 271 – 288. · Zbl 0558.55012 · doi:10.1017/S0013091500022690
[2] A. P. Bahri and M. E. Mahowald, A direct summand in \?*(\?\?\?8\?,\?\(_{2}\)), Proc. Amer. Math. Soc. 78 (1980), no. 2, 295 – 298. · Zbl 0436.57014
[3] E. H. Brown Jr. and F. P. Peterson, On the stable decomposition of \Omega &sup2;\?^{\?+2}, Trans. Amer. Math. Soc. 243 (1978), 287 – 298. · Zbl 0404.55003
[4] Richard A. Brualdi, Introductory combinatorics, North-Holland, New York-Oxford-Amsterdam, 1977. · Zbl 0385.05001
[5] Donald M. Davis, On the cohomology of \?\?\?8\?, Symposium on Algebraic Topology in honor of José Adem (Oaxtepec, 1981), Contemp. Math., vol. 12, Amer. Math. Soc., Providence, R.I., 1982, pp. 91 – 104. · Zbl 0505.55009
[6] Donald M. Davis, The splitting of \?\?\?8\?&and;\?\? and \?\?\?8\?&and;\?\?, Trans. Amer. Math. Soc. 276 (1983), no. 2, 671 – 683. · Zbl 0517.55003
[7] Donald M. Davis, Connective coverings of \?\? and immersions of projective spaces, Pacific J. Math. 76 (1978), no. 1, 33 – 42. · Zbl 0378.57011
[8] D. M. Davis, S. Gitler, W. Iberkleid, and M. E. Mahowald, Orientability of bundles with respect to certain spectra, Bol. Soc. Mat. Mexicana (2) 24 (1979), no. 2, 49 – 55. · Zbl 0505.55008
[9] Donald M. Davis and Mark Mahowald, The nonrealizability of the quotient \?//\?\(_{2}\) of the Steenrod algebra, Amer. J. Math. 104 (1982), no. 6, 1211 – 1216. · Zbl 0516.55015 · doi:10.2307/2374058
[10] -, Ext over the subalgebra \( {A_2}\) of the Steenrod algebra for stunted projective spaces, Proc. Conf., Current Trends in Algebraic Topology (Univ. of Western Ontario, 1981), Canad. Math. Soc. Conf. Proc., vol. 2, Part 1, 1982, pp. 297-342.
[11] Donald M. Davis and Mark Mahowald, The immersion conjecture for \?\?^{8\?+7} is false, Trans. Amer. Math. Soc. 236 (1978), 361 – 383. · Zbl 0369.57003
[12] V. Giambalvo, R. Mines, and D. J. Pengelley, Two-adic congruences between binomial coefficients, preprint. · Zbl 0732.11011
[13] V. Giambalvo and David J. Pengelley, The homology of \?Spin, Math. Proc. Cambridge Philos. Soc. 95 (1984), no. 3, 427 – 436. · Zbl 0554.55003 · doi:10.1017/S0305004100061752
[14] Vincent Giambalvo, David J. Pengelley, and Douglas C. Ravenel, Fractal structures in \?_{*}(\?\?) and their application to cobordism, The Lefschetz centennial conference, Part II (Mexico City, 1984) Contemp. Math., vol. 58, Amer. Math. Soc., Providence, RI, 1987, pp. 43 – 50. · Zbl 0638.55007
[15] Dale Husemoller, The structure of the Hopf algebra \?_{\ast }(\?\?) over a Z_{(\?)}-algebra, Amer. J. Math. 93 (1971), 329 – 349. · Zbl 0238.57024 · doi:10.2307/2373380
[16] Stanley O. Kochman, An algebraic filtration of \?_{\ast }(\?\?;\?\(_{2}\)), Proc. Edinburgh Math. Soc. (2) 26 (1983), no. 3, 313 – 317. · Zbl 0507.55007 · doi:10.1017/S0013091500004375
[17] -, An algebraic filtration of \( {H_{\ast}}BO' \), Proc. Conf. on Homotopy Theory (Northwestern Univ., Evanston, Ill., 1982), Contemp. Math., vol. 19, Amer. Math. Soc., Providence, R. I., 1983, pp. 115-143.
[18] Timothy Lance, Steenrod and Dyer-Lashof operations on \?\?, Trans. Amer. Math. Soc. 276 (1983), no. 2, 497 – 510. · Zbl 0522.55016
[19] A. M. Legendre, Théorie des nombres, in Vol. 1, 3rd ed., Didot Freres, Paris, 1830. · JFM 60.1212.16
[20] Arunas Liulevicius, Characteristic numbers, Topology and its applications (Proc. Conf., Memorial Univ. Newfoundland, St. John’s, Nfld., 1973) Dekker, New York, 1975, pp. 1 – 25. Lecture Notes in Pure and Appl. Math., Vol. 12. · Zbl 0305.57021
[21] B. Mandelbrot, personal communication.
[22] Stavros Papastavridis, An algebraic proof of a theorem of D. Pengelley on the structure of \?_{\ast }(\?\?\?;\?\(_{2}\)), Current trends in algebraic topology, Part 1 (London, Ont., 1981) CMS Conf. Proc., vol. 2, Amer. Math. Soc., Providence, R.I., 1982, pp. 507 – 510. David J. Pengelley, The \?-algebra structure of Thom spectra: \?\?\? as an example, Current trends in algebraic topology, Part 1 (London, Ont., 1981) CMS Conf. Proc., vol. 2, Amer. Math. Soc., Providence, R.I., 1982, pp. 511 – 513.
[23] David J. Pengelley, \?*(\?\?\?8\?;\?/2) is an extended \?*\(_{2}\)-coalgebra, Proc. Amer. Math. Soc. 87 (1983), no. 2, 355 – 356. · Zbl 0517.55012
[24] H. O. Peitgen and P. H. Richter, Schönheit im chaos (Frontiers of chaos), Forschungsgruppe Complexe Dynamik, Universität Bremen, 1985.
[25] David Singmaster, Divisibility of binomial and multinomial coefficients by primes and prime powers, A collection of manuscripts related to the Fibonacci sequence, Fibonacci Assoc., Santa Clara, Calif., 1980, pp. 98 – 113. · Zbl 0517.10013
[26] V. P. Snaith, A stable decomposition of \Omega \(^{n}\)\?\(^{n}\)\?, J. London Math. Soc. (2) 7 (1974), 577 – 583. · Zbl 0275.55019 · doi:10.1112/jlms/s2-7.4.577
[27] Robert E. Stong, Determination of \?*(\?\?(\?,\cdots,\infty ),\?\(_{2}\)) and \?*(\?\?(\?,\cdots,\infty ),\?\(_{2}\)), Trans. Amer. Math. Soc. 107 (1963), 526 – 544. · Zbl 0116.14702
[28] Robert M. Switzer, Algebraic topology — homotopy and homology, Springer-Verlag, New York-Heidelberg, 1975. Die Grundlehren der mathematischen Wissenschaften, Band 212. · Zbl 0305.55001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.