×

Spatial J-test: some Monte Carlo evidence. (English) Zbl 1322.62221

Summary: Researchers using spatial econometric methods generally assume a known structure for the process being modeled embedded in a spatial weights matrix. The present paper evaluates the performance of the J-test in selecting the most appropriate spatial structure in the context of a Monte Carlo study. Results suggest that the J-test performs well when used to select between different weights matrices. Increases in power are associated with the use of the full set of instruments.

MSC:

62M30 Inference from spatial processes
65C05 Monte Carlo methods
62-07 Data analysis (statistics) (MSC2010)

Software:

sn; R
Full Text: DOI

References:

[1] Anderson, T.: An Introduction to Multivariate Statistical Analysis. Wiley, Hoboken (2003) · Zbl 1039.62044
[2] Anselin, L.: Non-nested tests on the weight structure in spatial autoregressive models: some Monte Carlo results. J. Reg. Sci. 26(2), 267–284 (1986) · doi:10.1111/j.1467-9787.1986.tb00820.x
[3] Anselin, L.: Spatial Econometrics: Methods and Models. Kluwer Academic, Dordrecht (1988) · Zbl 1328.62406
[4] Anselin, L., Bera, A.: Spatial dependence in linear regression models with an introduction to spatial econometrics. In: Ullah, A., Giles, D. (eds.) Handbook of Applied Economic Statistics, pp. 237–289. Dekker, New York (1998)
[5] Arbia, G., Piras, G.: A new class of spatial concentration measures. Comput. Stat. Data Anal. 53(12), 4471–4481 (2009) · Zbl 1453.62030 · doi:10.1016/j.csda.2009.07.003
[6] Arraiz, I., Drukker, D., Kelejian, H., Prucha, I.: A spatial Clifford-type model with heteroscedastic innovations: small and large sample results. J. Reg. Sci. 50, 592–614 (2010) · doi:10.1111/j.1467-9787.2009.00618.x
[7] Atkinson, A.: A method for discriminating between models. J. R. Stat. Soc. Ser. B 32, 323–353 (1970) · Zbl 0225.62020
[8] Azzalini, A.: R package sn: The skew-normal and skew-t distributions (version 0.4-14). Università di Padova, Italia (2010)
[9] Azzalini, A., Capitanio, A.: Statistical applications of the multivariate skew-normal distribution. J. R. Stat. Soc. Ser. B 61, 579–602 (1999) · Zbl 0924.62050 · doi:10.1111/1467-9868.00194
[10] Cox, D.R.: Tests of separate families of hypothesis. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1. University of California Press, Berkeley (1961) · Zbl 0201.52102
[11] Cox, D.R.: Further results on tests of separate families of hypothesis. J. R. Stat. Soc. Ser. B 24, 406–424 (1962) · Zbl 0131.35801
[12] Cressie, N.: Statistic for Spatial Data. Wiley, New York (1993) · Zbl 0825.62477
[13] Dastoor, N.: Some aspects of testing non-nested hypothesis. J. Econom. 21, 213–228 (1983) · Zbl 0501.62054 · doi:10.1016/0304-4076(83)90014-3
[14] Davidson, R., MacKinnon, J.: Several tests for model specification in the presence of alternative hypotheses. Econometrica 49, 781–794 (1981) · Zbl 0472.62108 · doi:10.2307/1911522
[15] Davidson, R., MacKinnon, J.: Estimation and Inference in Econometrics. Oxford University Press, New York (1993) · Zbl 1009.62596
[16] Donovan, G.H., Champ, P.A., Butry, D.T.: Wildfire risk and housing prices: a case study from Colorado Springs. Land Econ. 83(3), 217–233 (2007) · doi:10.3368/le.83.2.217
[17] Genton, M.: Skew-elliptical Distributions and Their Applications. Chapman & Hall, Boca Raton (2004) · Zbl 1069.62045
[18] Godfrey, L.: Testing non-nested models after estimation by instrumental variables or least squares. Econometrica 51, 355–366 (1983) · Zbl 0498.62099 · doi:10.2307/1911994
[19] Kapoor, M., Kelejian, H., Prucha, I.: Panel data model with spatially correlated error components. J. Econom. 140(1), 97–130 (2007) · Zbl 1418.62482 · doi:10.1016/j.jeconom.2006.09.004
[20] Kelejian, H., Prucha, I.: A generalized spatial two stages least square procedure for estimating a spatial autoregressive model with autoregressive disturbances. J. Real Estate Finance Econ. 17(1), 99–121 (1998) · doi:10.1023/A:1007707430416
[21] Kelejian, H., Prucha, I.: A generalized moments estimator for the autoregressive parameter in a spatial model. Int. Econ. Rev. 40(2), 509–533 (1999) · doi:10.1111/1468-2354.00027
[22] Kelejian, H., Prucha, I.: Estimation of systems of spatially interrelated cross sectional equations. J. Econom. 118, 27–50 (2004) · Zbl 1033.62050 · doi:10.1016/S0304-4076(03)00133-7
[23] Kelejian, H.H.: A spatial j-test for model specification against a single or a set of nonnested alternatives. Lett. Spat. Res. Sci. 1(1), 3–11 (2008) · doi:10.1007/s12076-008-0001-9
[24] MacKinnon, J., White, H., Davidson, R.: Test for model specification in the presence of alternative hypotheses: some further results. J. Econom. 21, 53–70 (1983) · Zbl 0518.62090 · doi:10.1016/0304-4076(83)90119-7
[25] Pesaran, M.: On the general problem of model selection. Rev. Econ. Stud. 41, 153–171 (1974) · Zbl 0317.62049 · doi:10.2307/2296710
[26] Pesaran, M., Deaton, A.: Testing non-nested non-linear regression models. Econometrica 46, 677–694 (1978) · Zbl 0379.62089 · doi:10.2307/1914240
[27] Pesaran, M., Weeks, M.: Non-nested hypothesis testing: an overview. In: Baltagi, B. (ed.) A Companion to Theoretical Econometrics, Blackwell, Malden (2001)
[28] R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2009). ISBN 3-900051-07-0
[29] Schabenberger, O., Gotway, C.: Statistical Methods for Spatial Data Analysis. Chapman & Hall, Boca Raton (2005) · Zbl 1068.62096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.