×

Combined asymmetric spatial weights matrix with application to housing prices. (English) Zbl 1516.62699

Summary: In this study, a combined asymmetric spatial weights matrix is proposed for capturing the unequal spatial dependence of housing prices, where the advantage of this matrix was demonstrated by a non-nested hypothesis test. To explore the heterogeneous spatial impacts of urban essential characteristics on housing prices over the eastern, central, and western regions of China, after the Lagrange multiplier and likelihood ratio tests, the spatial Durbin model using the proposed weights matrix was applied to each region. The estimation results showed that the direct impacts of college and new employment were significantly negative in the eastern region, but not significant in the central and western regions. By contrast, the direct impacts of hospitals and scenic spots were significantly positive in eastern China, but not significant in central and western China. In addition, the indirect impacts of the four variables were not significant in the three regions. These results suggest that in eastern China, the government may increase the requirements for using medical resources and close tourist attractions in a single city to cool down the skyrocketing housing prices in this area.

MSC:

62-XX Statistics

Software:

Arc_Mat
Full Text: DOI

References:

[1] L. Anselin, Spatial Econometrics: Methods and Models, Kluwer, Dordrecht, 1988. · doi:10.1007/978-94-015-7799-1
[2] L. Anselin and A.K. Bera, Spatial dependence in linear regression models with an introduction to spatial econometrics, in Handbook of Applied Economic Statistics, A. Ullah and D.E.A. Giles, eds., Marcel Dekker, New York, 1998, pp. 237-289.
[3] L. Anselin, A.K. Bera, R. Florax, and M.J. Yoon, Simple diagnostic tests for spatial dependence, Reg. Sci. Urban Econ. 26 (1996), pp. 77-104. doi: 10.1016/0166-0462(95)02111-6 · doi:10.1016/0166-0462(95)02111-6
[4] L. Anselin and J. Le Gallo, Interpolation of air quality measures in hedonic house price models: Spatial aspects, Spat. Econ. Anal. 1 (2006), pp. 31-52. doi: 10.1080/17421770600661337
[5] K. Baicker, The spillover effects of state spending, J. Public Econ. 89 (2005), pp. 529-544. doi: 10.1016/j.jpubeco.2003.11.003 · doi:10.1016/j.jpubeco.2003.11.003
[6] S. Basu and T. Thibodeau, Analysis of spatial autocorrelation in house prices, J. Real Estate Finance Econ. 17 (1998), pp. 61-85. doi: 10.1023/A:1007703229507 · doi:10.1023/A:1007703229507
[7] A. Bhattacharjee and C. Jensen-Butler, Estimation of the spatial weights matrix under structural constraints, Reg. Sci. Urban Econ. 43 (2013), pp. 617-634. doi: 10.1016/j.regsciurbeco.2013.03.005 · doi:10.1016/j.regsciurbeco.2013.03.005
[8] S.C. Bourassa, E. Cantoni, and M. Hoesli, Spatial dependence, housing submarkets, and house price prediction, J. Real Estate Finance Econ. 35 (2007), pp. 143-160. doi: 10.1007/s11146-007-9036-8 · doi:10.1007/s11146-007-9036-8
[9] A.C. Case, H.S. Rosen, and J.R. Hines Jr, Budget spillovers and fiscal policy interdependence: Evidence from the states, J. Public Econ. 52 (1993), pp. 285-307. doi: 10.1016/0047-2727(93)90036-S · doi:10.1016/0047-2727(93)90036-S
[10] T. Cheng, J. Wang, J. Haworth, B. Heydecker, and A. Chow, A dynamic spatial weight matrix and localized space-time autoregressive integrated moving average for network modeling, Geogr. Anal. 46 (2014), pp. 75-97. doi: 10.1111/gean.12026 · doi:10.1111/gean.12026
[11] A.D. Cliff and J.K. Ord, Spatial Processes: Models & Applications, Pion Ltd., London, 1981. · Zbl 0598.62120
[12] J.P. Cohen and C.C. Coughlin, Spatial hedonic models of airport noise, proximity, and housing prices, J. Regional Sci. 48 (2008), pp. 859-878. doi: 10.1111/j.1467-9787.2008.00569.x · doi:10.1111/j.1467-9787.2008.00569.x
[13] K.S. Conway and J.C. Rork, Diagnosis murder: The death of state death taxes, Econ. Inq. 42 (2004), pp. 537-559. doi: 10.1093/ei/cbh080 · doi:10.1093/ei/cbh080
[14] D.R. Cox, Tests of Separate Families of Hypotheses, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, University of California Press, Berkeley, 1961, pp. 105-123. · Zbl 0201.52102
[15] D.R. Cox, Further results on tests of separate families of hypotheses, J. Roy. Stat. Soc. B 24 (1962), pp. 406-424. · Zbl 0131.35801
[16] K. Crabbé and H. Vandenbussche, Spatial tax competition in the EU15, Catholic University Leuven, Working Paper, 2008.
[17] R. Davidson and J.G. MacKinnon, Several tests for model specification in the presence of alternative hypotheses, Econometrica 49 (1981), pp. 781-793. doi: 10.2307/1911522 · Zbl 0472.62108 · doi:10.2307/1911522
[18] R. Davidson and J.G. MacKinnon, Estimation and Inference in Econometrics, Oxford University Press, New York, 1993. · Zbl 1009.62596
[19] R. Davidson and J.G. MacKinnon, Econometric Theory and Methods, Oxford University Press, New York, 2004.
[20] J.P. Elhorst, Applied spatial econometrics: Raising the bar, Spat. Econ. Anal. 5 (2010), pp. 9-28. doi: 10.1080/17421770903541772
[21] A. Getis and J. Aldstadt, Constructing the spatial weights matrix using a local statistic, Geogr. Anal. 36 (2004), pp. 90-104. doi: 10.1111/j.1538-4632.2004.tb01127.x · doi:10.1111/j.1538-4632.2004.tb01127.x
[22] H.H. Kelejian, G.S. Tavlas, and G. Hondroyiannis, A spatial modelling approach to contagion among emerging economies, Open Econ. Rev. 17 (2006), pp. 423-441. doi: 10.1007/s11079-006-0357-7 · Zbl 1187.91142 · doi:10.1007/s11079-006-0357-7
[23] C.W. Kim, T.T. Phipps, and L. Anselin, Measuring the benefits of air quality improvement: A spatial hedonic approach, J. Environ. Econ. Manag. 45 (2003), pp. 24-39. doi: 10.1016/S0095-0696(02)00013-X · Zbl 1036.91521 · doi:10.1016/S0095-0696(02)00013-X
[24] P. Kostov, A spatial quantile regression hedonic model of agricultural land prices, Spat. Econ. Anal. 4 (2009), pp. 53-72. doi: 10.1080/17421770802625957
[25] L.-F. Lee and J. Yu, QML estimation of spatial dynamic panel data models with time varying spatial weights matrices, Spat. Econ. Anal. 7 (2012), pp. 31-74. doi: 10.1080/17421772.2011.647057
[26] R.T.A.J. Leenders, Modeling social influence through network autocorrelation: Constructing the weight matrix, Soc. Networks 24 (2002), pp. 21-47. doi: 10.1016/S0378-8733(01)00049-1 · doi:10.1016/S0378-8733(01)00049-1
[27] J. Le Gallo, C. Ertur, and C. Baumont, A spatial econometric analysis of convergence across European regions, 1980-1995, in European Regional Growth, B. Fingleton, ed., Springer, Berlin, Heidelberg, 2003, pp. 99-129. · doi:10.1007/978-3-662-07136-6_4
[28] J.P. LeSage, A family of geographically weighted regression models, in Advances in Spatial Econometrics, L. Anselin, R.G.M. Florax, and S. Rey, eds., Springer, Berlin, Heidelberg, 2004, pp. 241-264. · doi:10.1007/978-3-662-05617-2_11
[29] J.P. LeSage and R.K. Pace, Introduction to Spatial Econometrics (Statistics, Textbooks and Monographs), CRC Press, Boca Raton, FL, 2009. · Zbl 1163.91004 · doi:10.1201/9781420064254
[30] J.P. LeSage and R.K. Pace, Interpreting spatial econometric models, in Handbook of Regional Science, M.M. Fischer and P. Nijkamp, eds., Springer, Berlin, Heidelberg, 2014, pp. 1535-1552. · doi:10.1007/978-3-642-23430-9_91
[31] W.-C. Liao and X. Wang, Hedonic house prices and spatial quantile regression, J. Hous. Econ. 21 (2012), pp. 16-27. doi: 10.1016/j.jhe.2011.11.001 · doi:10.1016/j.jhe.2011.11.001
[32] X. Liu, Spatial and temporal dependence in house price prediction, J. Real Estate Finance Econ. 47 (2013), pp. 341-369. doi: 10.1007/s11146-011-9359-3 · doi:10.1007/s11146-011-9359-3
[33] J.G. MacKinnon, Model specification tests against non-nested alternatives, Econom. Rev. 2 (1983), pp. 85-110. doi: 10.1080/07311768308800031 · Zbl 0604.62116
[34] J.G. MacKinnon, Model specification tests against non-nested alternatives, Queen’s University, Working Paper, No. 573, 2006.
[35] J.G. MacKinnon, H. White, and R. Davidson, Tests for model specification in the presence of alternative hypotheses: Some further results, J. Econom. 21 (1983), pp. 53-70. doi: 10.1016/0304-4076(83)90119-7 · Zbl 0518.62090 · doi:10.1016/0304-4076(83)90119-7
[36] Y. Maruyama, An alternative to Moran‘s I for spatial autocorrelation, preprint (2015), pp. 1-6. Available at arXiv:1501.06260v1, http://arxiv.org/pdf/1501.06260v1.pdf (accessed 26 July 2016).
[37] J.K. Ord and A. Getis, Local spatial autocorrelation statistics: Distributional issues and an application, Geogr. Anal. 27 (1995), pp. 286-306. doi: 10.1111/j.1538-4632.1995.tb00912.x · doi:10.1111/j.1538-4632.1995.tb00912.x
[38] R.K. Pace, R. Barry, J. Clapp, and M. Rodriquez, Spatiotemporal autoregressive models of neighborhood effects, J. Real Estate Finance Econ. 17 (1998), pp. 15-33. doi: 10.1023/A:1007799028599 · doi:10.1023/A:1007799028599
[39] M.H. Pesaran, On the general problem of model selection, Rev. Econ. Stud. 41 (1974), pp. 153-171. doi: 10.2307/2296710 · Zbl 0317.62049 · doi:10.2307/2296710
[40] M.H. Pesaran and A.S. Deaton, Testing non-nested nonlinear regression models, Econometrica 46 (1978), pp. 677-694. doi: 10.2307/1914240 · Zbl 0379.62089 · doi:10.2307/1914240
[41] M.H. Pesaran and M. Weeks, Non-nested hypothesis testing: An overview, in A Companion to Theoretical Econometrics, B.H. Baltagi, ed., Blackwell, Oxford, 2003, pp. 279-309. · doi:10.1002/9780470996249.ch14
[42] X. Qu and L.-F. Lee, Estimating a spatial autoregressive model with an endogenous spatial weight matrix, J. Econom. 184 (2015), pp. 209-232. doi: 10.1016/j.jeconom.2014.08.008 · Zbl 1332.62342 · doi:10.1016/j.jeconom.2014.08.008
[43] H. Seya, Y. Yamagata, and M. Tsutsumi, Automatic selection of a spatial weight matrix in spatial econometrics: Application to a spatial hedonic approach, Reg. Sci. Urban Econ. 43 (2013), pp. 429-444. doi: 10.1016/j.regsciurbeco.2013.02.002 · doi:10.1016/j.regsciurbeco.2013.02.002
[44] S. Stakhovych and T.H.A. Bijmolt, Specification of spatial models: A simulation study on weights matrices, Pap. Reg. Sci. 88 (2009), pp. 389-408. doi: 10.1111/j.1435-5957.2008.00213.x · doi:10.1111/j.1435-5957.2008.00213.x
[45] W. Wang and J. Yu, Estimation of spatial panel data models with time varying spatial weights matrices, Econ. Lett. 128 (2015), pp. 95-99. doi: 10.1016/j.econlet.2015.01.021 · Zbl 1321.62021 · doi:10.1016/j.econlet.2015.01.021
[46] D.C. Wheeler, Geographically weighted regression, in Handbook of Regional Science, M.M. Fischer and P. Nijkamp, eds., Springer, Berlin, Heidelberg, 2014, pp. 1435-1459. · doi:10.1007/978-3-642-23430-9_77
[47] T. Yokoi and A. Ando, One-directional adjacency matrices in spatial autoregressive model: A land price example and Monte Carlo results, Econ. Model. 29 (2012), pp. 79-85. doi: 10.1016/j.econmod.2011.08.011 · doi:10.1016/j.econmod.2011.08.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.