×

Flat compact Hermite-Lorentz manifolds in dimension 4. (English) Zbl 1445.53055

The article under review presents a classification (up to finite cover) of flat compact complete Hermite-Lorentz manifolds up to complex dimension \(4\).
Section 2 gives a presentation, valid in any dimension, of unipotent simply transitive groups of Hermite-Lorentz affine motion and a proposition about their conjugacy classes is proved.
In Section 3 one reduces, as for the Lorentzian case, the study of crystallographic groups to the study of lattices in simply transitive unipotent Lie groups. According to the main theorem from Section 3, the unipotent hypothesis from Section 2 only leaves out the easy abelian by cyclic case. This section ends with the classification of the latter case.
In Section 4 the classification, up to an isomorphism, of those \(H\) from Section 2 (unipotent groups acting simply transitively on \(a(\mathbf{C}^{n+1}),\) the affine space associated to the complex vector space \(\mathbf{C}^{n+1}\) endowed with a Hermitian form of signature \((n,1)\)) is started and their classification for the dimensions 2 and 3 is completed. In dimension 4 the classification of some particular cases, called degenerate cases, is given.
Section 5 completes the classification of the unipotent simply transitive groups \(H\) in dimension 4.
Section 6 deals with the study the Hermite-Lorentz crystallographic groups in the nilpotent case.
Finally in Section 7 the author gives some topological considerations about some compact flat Hermite-Lorentz manifolds that are virtually nilpotent, namely that they are finitely covered by torus bundles over tori.

MSC:

53C55 Global differential geometry of Hermitian and Kählerian manifolds
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
53C30 Differential geometry of homogeneous manifolds

References:

[1] Aubert, A.; Medina, A., Groupes de Lie pseudo-riemanniens plats, Tohoku Math. J., 2, 55, 487-506 (2003) · Zbl 1058.53055 · doi:10.2748/tmj/1113247126
[2] Auslander, L., Simply transitive groups of affine motions, Am. J. Math., 99, 809-826 (1977) · Zbl 0357.22006 · doi:10.2307/2373867
[3] Auslander, L., On radicals of discrete subgroups of Lie groups, Am. J. Math., 85, 145-150 (1963) · Zbl 0217.37002 · doi:10.2307/2373206
[4] Auslander, L.; Markus, L., Flat Lorentz 3-manifolds, Mem. Am. Math. Soc. No., 30, 145-150 (1959) · Zbl 0085.16304
[5] Ben Ahmed, A.; Zeghib, A., On homogeneous Hermite-Lorentz spaces, Asian J. Math., 20, 531-552 (2016) · Zbl 1350.53090 · doi:10.4310/AJM.2016.v20.n3.a6
[6] Boucetta, M., Lebzioui, H.: On flat pseudo-Euclidean nilpotent lie algebras (2019). arXiv:1711.06938 · Zbl 1461.17020
[7] Carrière, Y.; Dal’Bo, F., Généralisations du premiere théorème de Bieberbach sur les groupes cristallographiques, Enseign. Math., 35, 245-262 (1989) · Zbl 0697.20037
[8] Cornulier, Y., Gradings on Lie algebras, systolic growth, and cohopfian properties of nilpotent groups, Bull. Soc. Math. Fr., 144, 693-744 (2016) · Zbl 1370.17015 · doi:10.24033/bsmf.2725
[9] Corwin, L.J., Greenleaf, F.P.: Representations of nilpotent Lie groups and their applications. Part I. Basic theory and examples. Cambridge Studies in Advanced Mathematics, 18. Cambridge University Press, Cambridge (1990) · Zbl 0704.22007
[10] Fried, D., Flat spacetimes, J. Differ. Geom., 26, 385-396 (1987) · Zbl 0643.53047 · doi:10.4310/jdg/1214441484
[11] Fried, D.; Goldman, W., Three-dimensional affine crystallographic groups, Adv. Math., 47, 1-49 (1983) · Zbl 0571.57030 · doi:10.1016/0001-8708(83)90053-1
[12] Fried, D.; Goldman, W.; Hirsch, Mw, Affine manifolds with nilpotent holonomy, Comment. Math. Helv., 56, 487-523 (1981) · Zbl 0516.57014 · doi:10.1007/BF02566225
[13] Goldman, W.; Kamishima, Y., The fundamental group of a compact flat Lorentz space form is virtually polycyclic, J. Differ. Geom., 19, 233-240 (1984) · Zbl 0546.53039 · doi:10.4310/jdg/1214438430
[14] Gong, M.P.: Classification of nilpotent Lie algebras of dimension 7, Thesis (Ph.D.)-University of Waterloo (Canada), (1998)
[15] De Graaf, Wa, Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2, J. Algebra, 309, 640-653 (2007) · Zbl 1137.17012 · doi:10.1016/j.jalgebra.2006.08.006
[16] Greiter, G., A simple proof for a theorem of Kronecker, Am. Math. Mon., 85, 756-757 (1978) · doi:10.1080/00029890.1978.11994694
[17] Grunewald, F.; Margulis, G., Transitive and quasitransitive actions of affine groups preserving a generalized Lorentz-structure, J. Geom. Phys., 5, 493-531 (1988) · Zbl 0706.57022 · doi:10.1016/0393-0440(88)90017-4
[18] Knapp, A.W.: Lie groups Beyond an Introduction, vol. 140, 2nd edn. Progress in Mathematics, Boston (2002) · Zbl 1075.22501
[19] Marques, S., Ward, K.: Cubic Fields: A Primer (2017). arXiv:1703.06219 · Zbl 1429.11193
[20] Mostow, Gd, Factor spaces of solvable groups, Ann. Math., 2, 60, 1-27 (1954) · Zbl 0057.26103 · doi:10.2307/1969700
[21] Raghunathan, Ms, Discrete Subgroups of Lie Groups (1972), Berlin: Springer, Berlin · Zbl 0254.22005
[22] Salamon, Sm, Complex structures on nilpotent Lie algebras, J. Pure Appl. Algebra, 157, 311-333 (2001) · Zbl 1020.17006 · doi:10.1016/S0022-4049(00)00033-5
[23] Scheuneman, J., Fundamental groups of compact complete locally affine complex surfaces, II. Pac. J. Math., 52, 553-566 (1974) · Zbl 0291.32029 · doi:10.2140/pjm.1974.52.553
[24] Skjelbred, T., Sund, T.: On the classification of nilpotent Lie algebras, Technical report, Mathematisk institutt, Universitetet i Oslo (1977) · Zbl 0375.17006
[25] Vaisman, I.: Symplectic geometry and secondary characteristic classes. Progress in Mathematics, 72. Birkhäuser Boston, Inc., Boston (1987) · Zbl 0629.53002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.