×

Compact flat spacetimes. (English) Zbl 1085.53062

The author gives a precise classification of compact flat space-times. He uses different techniques from those ones used in the paper by F. Grunewald and G. Margulis [J. Geom. Phys. 5, 493–531 (1988; Zbl 0706.57022)]. By a purely geometric approach he proves that a compact flat space-time (up to a finite cover) is either a \(K\)-step nilmanifold with \(k\leq 3\), or a 2-step solvmanifold diffeomorphic to the product \(T^m \times T^{2k+3}_A\), where \(n=m+2k+3\) and \(A\) is a Lorentz matrix in SL\(_{2k+3}(\mathbb{Z})\). Then he uses this result to study the existence of closed time-like and null geodesics in compact flat space-times.

MSC:

53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
53C22 Geodesics in global differential geometry
22E25 Nilpotent and solvable Lie groups

Citations:

Zbl 0706.57022
Full Text: DOI

References:

[1] A. Aubert, Structures affines et pseudo-métriques invariantes à gauche sur des groupes de Lie, Thesis, Univ. of Montpellier II, 1996; A. Aubert, Structures affines et pseudo-métriques invariantes à gauche sur des groupes de Lie, Thesis, Univ. of Montpellier II, 1996
[2] Auslander, L.; Markus, L., Flat Lorentz 3-manifolds, Mem. Amer. Soc. Math, 30 (1959) · Zbl 0085.16304
[3] Auslander, L., Simply transitive groups of affine motions, Amer. J. Math, 99, 809-821 (1977) · Zbl 0357.22006
[4] Borel, A., Linear Algebraic Groups (1969), Benjamin: Benjamin New York · Zbl 0186.33201
[5] Carrière, Y., Autour de la conjecture de L. Marcus sur les variétés affines, Invent. Math, 95, 615-628 (1989) · Zbl 0682.53051
[6] Carrière, Y.; Dal’Bo, F., Généralisations du premier théorème de Bieberbach sur les groupes cristallographiques, Enseign. Math, 35, 245-262 (1989) · Zbl 0697.20037
[7] Fried, D.; Goldman, W. M., Three-dimensional affine crystallographic groups, Adv. Math, 47, 1-49 (1983) · Zbl 0571.57030
[8] Fried, D., Flat spacetimes, J. Differential Geom, 26, 385-396 (1987) · Zbl 0643.53047
[9] Fried, D., Distality, completeness, and affine structures, J. Differential Geom, 24, 265-273 (1986) · Zbl 0608.53026
[10] Fried, D.; Goldman, W. M.; Hirsch, M. W., Affine manifolds with nilpotent holonomy, Comment. Math. Helv, 56, 487-523 (1981) · Zbl 0516.57014
[11] Galloway, G. J., Compact Lorentz manifolds without closed nonspacelike geodesics, Proc. Amer. Math. Soc, 98, 119-123 (1986) · Zbl 0601.53053
[12] Ghys, E., Actions localement libres du groupe affine, Invent. Math, 82, 479-526 (1985) · Zbl 0577.57010
[13] Goldman, W. M.; Kamishima, Y., The fundamental group of a compact flat Lorentz space form is virtually polycyclic, J. Differential Geom, 19, 233-240 (1984) · Zbl 0546.53039
[14] Grunewald, F.; Margulis, G., Transitive and quasitransitive actions of affine groups preserving a generalized Lorentz structure, J. Geom. Phys, 5, 493-531 (1988) · Zbl 0706.57022
[15] Guediri, M., On the existence of closed timelike geodesics in compact spacetimes, Math. Z, 239, 277-291 (2002) · Zbl 1006.53059
[16] Guediri, M., On the existence of closed timelike geodesics in compact spacetimes. II, Math. Z, 244, 577-585 (2003) · Zbl 1054.53083
[17] Guediri, M., On the nonexistence of closed timelike geodesics in flat Lorentz 2-step nilmanifolds, Trans. Amer. Math. Soc, 355, 775-786 (2003) · Zbl 1028.53045
[18] Guediri, M., Lorentz geometry of 2-step nilpotent Lie groups, Geom. Dedicata, 100, 11-51 (2003) · Zbl 1037.53046
[19] Medina, A.; Khakimdjanov, Y. U., Groupes de Lie nilpotents à structure affine invariante à gauche, Trans. Groups, 6, 165-174 (2001) · Zbl 1016.22004
[20] Raghunathan, M. S., Discrete Subgroups of Lie Groups (1972), Springer: Springer New York · Zbl 0254.22005
[21] Scheuneman, J., Translations in certain groups of affine motions, Proc. Amer. Math. Soc, 47, 223-228 (1975) · Zbl 0293.22036
[22] Tipler, F. T., Existence of closed timelike geodesics in Lorentz spaces, Proc. Amer. Math. Soc, 76, 145-147 (1979) · Zbl 0387.53024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.