×

Conelike radiant structures. (English) Zbl 1527.53011

Summary: Analogues of the classical affine-projective correspondence are developed in the context of statistical manifolds compatible with a radiant vector field. These utilize a formulation of Einstein equations for special statistical structures that generalizes the usual Einstein equations for pseudo-Riemannian metrics and is of independent interest. A conelike radiant structure is a not necessarily flat affine connection equipped with a family of surfaces that behave like the intersections of the planes through the origin with a convex cone in a real vector space. A radiant structure is a torsion-free affine connection and a vector field whose covariant derivative is the identity endomorphism. A radiant structure is conelike if for every point and every two-dimensional subspace containing the radiant vector field there is a totally geodesic surface passing through the point and tangent to the subspace. Such structures exist on the total space of any principal bundle with one-dimensional fiber and on any Lie group with a quadratic structure on its Lie algebra. The affine connection of a conelike radiant structure can be normalized in a canonical way to have antisymmetric Ricci tensor. Applied to a conelike radiant structure on the total space of a principal bundle with one-dimensional fiber this yields a generalization of the classical Thomas connection of a projective structure. The compatibility of radiant and conelike structures with metrics is investigated and yields a construction of connections for which the symmetrized Ricci curvature is a constant multiple of a compatible metric that generalizes well-known constructions of Riemannian and Lorentzian Einstein-Weyl structures over Kähler-Einstein manifolds having nonzero scalar curvature. A formulation of Einstein equations for special statistical manifolds is given that generalizes the Einstein-Weyl equations and encompasses these more general examples. There are constructed left-invariant conelike radiant structures on a Lie group endowed with a left-invariant nondegenerate bilinear form, and the case of three-dimensional unimodular Lie groups is described in detail.

MSC:

53A40 Other special differential geometries
53A15 Affine differential geometry
53A20 Projective differential geometry

References:

[1] Amari, S.-i.: Differential-Geometrical Methods in Statistics. Lecture Notes in Statistics, vol. 28. Springer, New York (1985) · Zbl 0559.62001
[2] Amari, S.-i.: Information Geometry and Its Applications. Applied Mathematical Sciences, vol. 194. Springer, Tokyo (2016) · Zbl 1350.94001
[3] Amari, S.-i., Nagaoka, H.: Methods of Information Geometry. Translations of Mathematical Monographs, vol. 191. American Mathematical Society, Providence, RI (2000) · Zbl 0960.62005
[4] Arrowsmith, DK; Furness, PMD, Locally symmetric spaces, J. London Math. Soc. (2), 10, 4, 487-499 (1975) · Zbl 0318.53049
[5] Arrowsmith, DK; Furness, PMD, Flat affine Klein bottles, Geometriae Dedicata, 5, 1, 109-115 (1976) · Zbl 0331.53014
[6] Ay, N., Jost, J., Lê, H.V., Schwachhöfer, L.: Information geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 64. Springer, Cham (2017) · Zbl 1383.53002
[7] Bailey, TN; Eastwood, MG; Gover, AR, Thomas’s structure bundle for conformal, projective and related structures, Rocky Mt. J. Math., 24, 4, 1191-1217 (1994) · Zbl 0828.53012
[8] Balan, V.; Peyghan, E.; Sharahi, E., Statistical structures on the tangent bundle of a statistical manifold with Sasaki metric, Hacet. J. Math. Stat., 49, 1, 120-135 (2020) · Zbl 1488.53036
[9] Baues, O.: The deformation of flat affine structures on the two-torus. In: Handbook of Teichmüller Theory, vol. IV, IRMA Lecture Notes on Mathematics and Theoretical Physics, vol. 19, pp. 461-537. European Mathematical Society, Zürich (2014) · Zbl 1311.30018
[10] Bengtsson, I.; Sandin, P., Anti-de Sitter space, squashed and stretched, Class. Quantum Gravity, 23, 3, 971-986 (2006) · Zbl 1087.83058
[11] Benoist, Y.: Tores affines, Crystallographic Groups and Their Generalizations (Kortrijk, 1999), Contemporary Mathematics, vol. 262, pp. 1-37. American Mathematical Society, Providence, RI (2000) · Zbl 0990.53053
[12] Benzecri, J. P.: Variétés localement affines, Séminaire Ehresmann. Topologie et Géométrie différentielle 2(7), 1-35 (1958-60) · Zbl 0133.15602
[13] Bianchi, L., Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti, Memorie della Società Italiana delle Scienze (detta dei XL), 11, 267-352 (1898) · JFM 29.0415.01
[14] Biswas, I.; Loftin, J.; Stemmler, M., Affine Yang-Mills-Higgs metrics, J. Symplectic Geom., 11, 3, 377-404 (2013) · Zbl 1280.53027
[15] Blaga, AM; Chen, B-Y, Gradient solitons on statistical manifolds, J. Geom. Phys., 164 (2021) · Zbl 1462.35131
[16] Blaga, A.M., Nannicini, A.: \( \alpha \)-connections in generalized geometry. J. Geom. Phys. 165, Paper No. 104225, 17 (2021) · Zbl 1477.53037
[17] Bourguignon, J.-P.: A mathematician’s visit to Kaluza-Klein theory. Rend. Sem. Mat. Univ. Politec. Torino (1989), no. Special Issue, 143-163 (1990) · Zbl 0717.53062
[18] Bursztyn, H.; Lima, H.; Meinrenken, E., Splitting theorems for Poisson and related structures, J. Reine Angew. Math., 754, 281-312 (2019) · Zbl 1425.53103
[19] Calabi, E.: Examples of Bernstein problems for some nonlinear equations. In: Global Analysis (Proc. Sympos. Pure Math., vol. XV, Berkeley, Calif., 1968), pp. 223-230. American Mathematical Society, Providence, RI (1970) · Zbl 0211.12801
[20] Calabi, E.: Complete affine hyperspheres I. In: Symposia Mathematica, vol. X (Convegno di Geometria Differenziale, INDAM, Rome, 1971), pp. 19-38. Academic Press, London (1972) · Zbl 0252.53008
[21] Calabi, E.: A construction of nonhomogeneous Einstein metrics. In: Differential geometry (Proc. Sympos. Pure Math., vol. XXVII, Stanford Univ., Stanford, Calif., 1973), Part 2, pp. 17-24. American Mathematical Society, Providence, RI (1975) · Zbl 0309.53043
[22] Calderbank, DMJ, Möbius structures and two-dimensional Einstein-Weyl geometry, J. Reine Angew. Math., 504, 37-53 (1998) · Zbl 0909.53029
[23] Calderbank, DMJ, The Faraday 2-form in Einstein-Weyl geometry, Math. Scand., 89, 1, 97-116 (2001) · Zbl 1130.53303
[24] Calderbank, D.M.J., Pedersen, H.: Einstein-Weyl geometry. In: Surveys in differential geometry: essays on Einstein manifolds, Surv. Differ. Geom., VI, pp. 387-423. Int. Press, Boston, MA (1999) · Zbl 0996.53030
[25] Čap, A.; Gover, AR, Tractor calculi for parabolic geometries, Trans. Am. Math. Soc., 354, 4, 1511-1548 (2002) · Zbl 0997.53016
[26] Čap, A., Mettler, T.: Geometric theory of Weyl structures. arXiv:1908.10325 · Zbl 1521.53014
[27] Čap, A., Slovák, J.: Parabolic Geometries. I. Background and General Theory, Mathematical Surveys and Monographs, vol. 154. American Mathematical Society, Providence, RI (2009) · Zbl 1183.53002
[28] Cardoso, GL; Mohaupt, T., Special geometry, Hessian structures and applications, Phys. Rep., 855, 1-141 (2020) · Zbl 1475.83060
[29] Carrière, Y.; Dal’bo, F.; Meigniez, G., Inexistence de structures affines sur les fibrés de Seifert, Math. Ann., 296, 4, 743-753 (1993) · Zbl 0793.57006
[30] Čencov, N.N.: Statistical decision rules and optimal inference. Translations of Mathematical Monographs, vol. 53. American Mathematical Society, Providence, RI (1982) (Translation from the Russian edited by Lev J. Leifman) · Zbl 0484.62008
[31] Cheeger, J.; Colding, TH, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. Math. (2), 144, 1, 189-237 (1996) · Zbl 0865.53037
[32] Cheeger, J.; Ebin, DG, Comparison Theorems in Riemannian Geometry (1975), Amsterdam: North-Holland Publishing Co., Amsterdam · Zbl 0309.53035
[33] Chen, B-Y, Some results on concircular vector fields and their applications to Ricci solitons, Bull. Korean Math. Soc., 52, 5, 1535-1547 (2015) · Zbl 1343.53038
[34] Chen, B-Y, Differential Geometry of Warped Product Manifolds and Submanifolds (2017), Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ · Zbl 1390.53001
[35] Chen, Y.; Kontsevich, M.; Schwarz, A., Symmetries of WDVV equations, Nucl. Phys. B, 730, 3, 352-363 (2005) · Zbl 1276.81096
[36] Cheng, SY; Yau, ST, On the regularity of the Monge-Ampère equation \(\text{det}(\partial^2 u/\partial x_i\partial x_j)=F(x, u)\), Commun. Pure Appl. Math., 30, 1, 41-68 (1977) · Zbl 0347.35019
[37] Cheng, S.Y., Yau, S.T.: The real Monge-Ampère equation and affine flat structures. In: Proceedings of the 1980 Beijing Symposium on Differential Geometry and Differential Equations, vols. 1, 2, 3 (Beijing, 1980) (Beijing), pp. 339-370. Science Press (1982) · Zbl 0517.35020
[38] Cheng, SY; Yau, ST, Complete affine hypersurfaces. I. The completeness of affine metrics, Commun. Pure Appl. Math., 39, 6, 839-866 (1986) · Zbl 0623.53002
[39] Chern, S.S.: Circle Bundles, Geometry and Topology (Proc. III Latin America School of Mathematics, Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976), Lecture Notes in Mathematics, vol. 597, pp. 114-131. Springer, Berlin (1977) · Zbl 0356.55005
[40] Choi, S.: The decomposition and classification of radiant affine 3-manifolds. Mem. Am. Math. Soc. 154(730), viii+122 (2001) · Zbl 0992.57009
[41] Cieliebak, K.; Eliashberg, Y., From Stein to Weinstein and Back, American Mathematical Society Colloquium Publications (2012), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1262.32026
[42] Coddington, EA; Levinson, N., Theory of Ordinary Differential Equations (1955), New York: McGraw-Hill Book Company Inc, New York · Zbl 0064.33002
[43] Daly, C.: Closed affine manifolds with an invariant line. arXiv:2009.14341
[44] Dani, S.G.: Actions of automorphism groups of lie groups. In: Handbook of Group Actions. vol. IV. Advances in Lecture Mathematics (ALM), vol. 41, pp. 529-562. International Press, Somerville, MA (2018) · Zbl 1414.22017
[45] Dhooghe, PF, The T. Y. Thomas construction of projectively related manifolds, Geom. Dedicata, 55, 3, 221-235 (1995) · Zbl 0839.53010
[46] Dhooghe, PF; Van Vlierden, A., Projective geometry on the bundle of volume forms, J. Geom., 62, 1-2, 66-83 (1998) · Zbl 1006.53014
[47] Dubrovin, B., Integrable systems in topological field theory, Nucl. Phys. B, 379, 3, 627-689 (1992)
[48] Dubrovin, B.: Geometry of \(2\) D topological field theories. In: Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Mathematics, vol. 1620, pp. 120-348. Springer, Berlin (1996) · Zbl 0841.58065
[49] Duistermaat, JJ, On Hessian Riemannian structures, Asian J. Math., 5, 1, 79-91 (2001) · Zbl 1021.53021
[50] Eliashberg, Y., Gromov, M.: Convex symplectic manifolds. In: Several Complex Variables and Complex Geometry, Part 2 (Santa Cruz, CA, 1989), Proceedings Symposium Pure Mathematics, vol. 52, pp. 135-162. American Mathematical Society, Providence, RI (1991) · Zbl 0742.53010
[51] Eliashberg, Y.; Kim, SS; Polterovich, L., Geometry of contact transformations and domains: orderability versus squeezing, Geom. Topol., 10, 1635-1747 (2006) · Zbl 1134.53044
[52] Farber, M., Topology of Closed One-Forms, Mathematical Surveys and Monographs (2004), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1052.58016
[53] Fefferman, C., Graham, C.R.: The Ambient Metric. Annals of Mathematics Studies, No. 178. Princeton University Press, Princeton, NJ (2011) · Zbl 1243.53004
[54] Fefferman, CL, Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. Math. (2), 103, 2, 395-416 (1976) · Zbl 0322.32012
[55] Fialkow, A., Conformal geodesics, Trans. Am. Math. Soc., 45, 3, 443-473 (1939) · Zbl 0021.06501
[56] Fox, D.J.F.: Commutative algebras with nondegenerate invariant trace form and trace-free multiplication endomorphisms. arXiv:2004.12343
[57] Fox, D.J.F.: Geometric structures modeled on affine hypersurfaces and generalizations of the Einstein Weyl and affine hypersphere equations. arXiv:0909.1897
[58] Fox, DJF, Einstein-like geometric structures on surfaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), XII, 5, 499-585 (2013) · Zbl 1285.53006
[59] Fox, DJF, Ricci flows on surfaces related to the Einstein Weyl and Abelian vortex equations, Glasg. Math. J., 56, 3, 569-599 (2014) · Zbl 1401.53051
[60] Fox, D.J.F.: Geometric structures modeled on affine hypersurfaces and generalizations of the Einstein-Weyl and affine sphere equations. In: Extended abstracts Fall 2013—geometrical analysis, type theory, homotopy theory and univalent foundations, Trends Math. Res. Perspect. CRM Barc., vol. 3, pp. 15-19. Birkhäuser/Springer, Cham (2015)
[61] Fox, DJF, A Schwarz lemma for Kähler affine metrics and the canonical potential of a convex cone, Ann. Mat. Pura Appl. (4), 194, 1, 1-42 (2015) · Zbl 1343.53073
[62] Fox, DJF, Functions dividing their Hessian determinants and affine spheres, Asian J. Math., 20, 3, 503-530 (2016) · Zbl 1356.53012
[63] Fox, DJF, Harmonic cubic homogeneous polynomials such that the norm-squared of the Hessian is a multiple of the Euclidean quadratic form, Anal. Math. Phys., 11, 1, 43 (2021) · Zbl 1460.31010
[64] Fried, D.; Goldman, W.; Hirsch, MW, Affine manifolds with nilpotent holonomy, Comment. Math. Helv., 56, 4, 487-523 (1981) · Zbl 0516.57014
[65] Fujitani, Y.: Information geometry of warped product spaces. Inf. Geom. 6(1), 127-155 (2023) · Zbl 1525.53024
[66] Goldman, W.; Hirsch, MW, The radiance obstruction and parallel forms on affine manifolds, Trans. Am. Math. Soc., 286, 2, 629-649 (1984) · Zbl 0561.57014
[67] Goldman, W.M.: Geometric Structures on Manifolds. Unpublished lecture notes (2018)
[68] Goldstein, H., Classical Mechanics (1980), Reading, MA: Addison-Wesley Publishing Co., Reading, MA · Zbl 0491.70001
[69] Gover, AR, Invariants on projective space, J. Am. Math. Soc., 7, 1, 145-158 (1994) · Zbl 0845.53010
[70] Gover, AR; Matveev, VS, Projectively related metrics, Weyl nullity and metric projectively invariant equations, Proc. Lond. Math. Soc. (3), 114, 2, 242-292 (2017) · Zbl 1388.58005
[71] Gover, AR; Neusser, K.; Willse, T., Projective geometry of Sasaki-Einstein structures and their compactification, Dissertationes Math., 546, 64 (2019) · Zbl 1462.53009
[72] Graham, CR; Lee, JM, Einstein metrics with prescribed conformal infinity on the ball, Adv. Math., 87, 2, 186-225 (1991) · Zbl 0765.53034
[73] Grossman, DA, Torsion-free path geometries and integrable second order ODE systems, Selecta Math. (N.S.), 6, 4, 399-442 (2000) · Zbl 0997.53013
[74] Haba, K.; Matsuzoe, H., Complex affine distributions, Differ. Geom. Appl., 75, 13 (2021) · Zbl 1470.53018
[75] Haj Saeedi Sadegh, AR; Higson, N., Euler-like vector fields, deformation spaces and manifolds with filtered structure, Doc. Math., 23, 293-325 (2018) · Zbl 1393.57018
[76] Har’El, Z., Projective mappings and distortion theorems, J. Differ. Geom., 15, 1, 97-106 (1980) · Zbl 0457.53024
[77] Helmstetter, J.: Radical d’une algèbre symétrique à gauche. Ann. Inst. Fourier (Grenoble) 29(4), viii, 17-35 (1979) · Zbl 0403.16020
[78] Hertling, C., Manin, Yu.: Weak Frobenius manifolds. Int. Math. Res. Not. (6), 277-286 (1999) · Zbl 0960.58003
[79] Hildebrand, R., Canonical barriers on convex cones, Math. Oper. Res., 39, 3, 841-850 (2014) · Zbl 1308.90199
[80] Hitchin, N., Frobenius Manifolds, Gauge Theory and Symplectic Geometry (Montreal, PQ, 1995), NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, vol. 488, pp. 69-112. Kluwer Academic Publishers, Dordrecht (1997) · Zbl 0867.53027
[81] Jacobson, N., A note on automorphisms and derivations of Lie algebras, Proc. Am. Math. Soc., 6, 281-283 (1955) · Zbl 0064.27002
[82] Jacobson, N., A note on three dimensional simple Lie algebras, J. Math. Mech., 7, 823-831 (1958) · Zbl 0198.05404
[83] Jones, PE; Tod, KP, Minitwistor spaces and Einstein-Weyl spaces, Class. Quantum Gravity, 2, 4, 565-577 (1985) · Zbl 0575.53042
[84] Kirby, R.: Problems in low-dimensional topology. In: Geometric topology (Athens, GA, 1993) (R. Kirby, ed.), AMS/IP Stud. Adv. Math., vol. 2, pp. 35-473. American Mathematical Society, Providence, RI (1997) · Zbl 0888.57014
[85] Klartag, B.: Affine hemispheres of elliptic type. Algebra i Analiz 29(1), 145-188 (2017). Reprinted in St. Petersburg Math. J. 29(1), 107-138 (2018) · Zbl 1396.53013
[86] Klartag, B.; Kolesnikov, AV, Remarks on curvature in the transportation metric, Anal. Math., 43, 1, 67-88 (2017) · Zbl 1399.35211
[87] Kobayashi, S., Principal fibre bundles with the \(1\)-dimensional toroidal group, Tôhoku Math. J. (2), 8, 29-45 (1956) · Zbl 0075.32103
[88] Kobayashi, S.: Projectively invariant distances for affine and projective structures. In: Differential Geometry (Warsaw, 1979), Banach Center Publications, vol. 12, pp. 127-152. PWN, Warsaw (1984) · Zbl 0558.53019
[89] Kobayashi, S.; Nagano, T., On projective connections, J. Math. Mech., 13, 215-235 (1964) · Zbl 0117.39101
[90] Kobayashi, S.; Nomizu, K., Foundations of Differential Geometry (1963), New York: Interscience, New York · Zbl 0119.37502
[91] Koszul, J.-L.: Lectures on fibre Bundles and Differential Geometry, Notes by S. Ramanan. Tata Institute of Fundamental Research Lectures on Mathematics, No. 20, Tata Institute of Fundamental Research, Bombay (1965) · Zbl 0244.53026
[92] Kurose, T., Dual connections and affine geometry, Math. Z., 203, 1, 115-121 (1990) · Zbl 0696.53005
[93] Kurose, T., Conformal-projective geometry of statistical manifolds, Interdiscip. Inform. Sci., 8, 1, 89-100 (2002) · Zbl 1030.53031
[94] Lam, TY, Introduction to Quadratic Forms Over Fields, Graduate Studies in Mathematics (2005), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1068.11023
[95] Landau, L.D., Lifshitz, E.M.: Mechanics. Course of Theoretical Physics, vol. 1. Pergamon Press, Oxford (1960) (Translated from the Russian by J. B. Bell) · Zbl 0112.15404
[96] Lê, HV, Statistical manifolds are statistical models, J. Geom., 84, 1-2, 83-93 (2005) · Zbl 1101.53037
[97] Lee, JM, The Fefferman metric and pseudo-Hermitian invariants, Trans. Am. Math. Soc., 296, 1, 411-429 (1986) · Zbl 0595.32026
[98] Loewner, C., Nirenberg, L.: Partial differential equations invariant under conformal or projective transformations. In: Contributions to analysis (a collection of papers dedicated to Lipman Bers), pp. 245-272. Academic Press, New York (1974) · Zbl 0298.35018
[99] Loftin, JC, Affine spheres and convex \(\mathbb{R}\mathbb{P}^n \)-manifolds, Am. J. Math., 123, 2, 255-274 (2001) · Zbl 0997.53010
[100] Loftin, JC, Affine spheres and Kähler-Einstein metrics, Math. Res. Lett., 9, 4, 425-432 (2002) · Zbl 1033.53039
[101] Loftin, JC, Riemannian metrics on locally projectively flat manifolds, Am. J. Math., 124, 3, 595-609 (2002) · Zbl 1014.53023
[102] Loftin, J.C.: Survey on affine spheres. In: Handbook of geometric analysis. Vol. II, Adv. Lect. Math. (ALM), vol. 13, pp. 161-192. Int. Press, Somerville, MA (2010) · Zbl 1214.53013
[103] Loftin, JC; Yau, ST; Zaslow, E., Affine manifolds, SYZ geometry and the “Y” vertex, J. Differ. Geom., 71, 1, 129-158 (2005) · Zbl 1094.32007
[104] Maclachlan, C.; Reid, AW, The Arithmetic of Hyperbolic 3-manifolds, Graduate Texts in Mathematics (2003), New York: Springer, New York · Zbl 1025.57001
[105] Malcolmson, P., Enveloping algebras of simple three-dimensional Lie algebras, J. Algebra, 146, 1, 210-218 (1992) · Zbl 0752.17009
[106] Marugame, T., GJMS operators and \(Q\)-curvature for conformal Codazzi structures, Differ. Geom. Appl., 49, 176-196 (2016) · Zbl 1353.53011
[107] Marugame, T., The Bonnet theorem for statistical manifolds, Inf. Geom., 4, 2, 363-376 (2021) · Zbl 1489.53025
[108] Matsuzoe, H., On realization of conformally-projectively flat statistical manifolds and the divergences, Hokkaido Math. J., 27, 2, 409-421 (1998) · Zbl 0922.53002
[109] Matsuzoe, H., Geometry of semi-Weyl manifolds and Weyl manifolds, Kyushu J. Math., 55, 1, 107-117 (2001) · Zbl 1024.53008
[110] Matsuzoe, H.; Inoguchi, J-I, Statistical structures on tangent bundles, Appl. Sci., 5, 1, 55-75 (2003) · Zbl 1035.53027
[111] Meeks, III W.H., Pérez, J.: Constant mean curvature surfaces in metric Lie groups. In: Geometric Analysis: Partial Differential Equations and Surfaces, Contemporary Mathematics, vol. 570, pp. 25-110. American Mathematical Society, Providence, RI (2012) · Zbl 1267.53006
[112] Meinrenken, E., Euler-like vector fields, normal forms, and isotropic embeddings, Indag. Math. (N.S.), 32, 1, 224-245 (2021) · Zbl 1465.53037
[113] Meyer, P.: Involutions of sl(2,k) and non-split, three-dimensional simple Lie algebras. arXiv:2002.11988 · Zbl 1521.17019
[114] Milnor, J., Curvatures of left invariant metrics on Lie groups, Adv. Math., 21, 3, 293-329 (1976) · Zbl 0341.53030
[115] Milnor, JW, Topology from the Differentiable Viewpoint, Princeton Landmarks in Mathematics (1997), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 1025.57002
[116] Mostow, GD, A structure theorem for homogeneous spaces, Geom. Dedicata, 114, 87-102 (2005) · Zbl 1086.57024
[117] Nagano, T.; Yagi, K., The affine structures on the real two-torus. I, Osaka J. Math., 11, 181-210 (1974) · Zbl 0285.53030
[118] Nomizu, K., On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. Math. (2), 59, 531-538 (1954) · Zbl 0058.02202
[119] Opozda, B., Curvature bounded conjugate symmetric statistical structures with complete metric, Ann. Global Anal. Geom., 55, 4, 687-702 (2019) · Zbl 1417.53039
[120] Pedersen, H.; Swann, A., Riemannian submersions, four-manifolds and Einstein-Weyl geometry, Proc. Lond. Math. Soc. (3), 66, 2, 381-399 (1993) · Zbl 0742.53014
[121] Rodnianski, I.; Shlapentokh-Rothman, Y., The asymptotically self-similar regime for the Einstein vacuum equations, Geom. Funct. Anal., 28, 3, 755-878 (2018) · Zbl 1394.35501
[122] Sasaki, T., Hyperbolic affine hyperspheres, Nagoya Math. J., 77, 107-123 (1980) · Zbl 0404.53003
[123] Selig, JM, Geometric Fundamentals of Robotics. Monographs in Computer Science (2005), New York: Springer, New York · Zbl 1062.93002
[124] Sharpe, RW, Differential Geometry, Graduate Texts in Mathematics (1997), New York: Springer, New York
[125] Shima, H., Compact locally Hessian manifolds, Osaka J. Math., 15, 3, 509-513 (1978) · Zbl 0415.53032
[126] Shima, H., Homogeneous Hessian manifolds, Ann. Inst. Fourier (Grenoble), 30, 3, 91-128 (1980) · Zbl 0424.53023
[127] Shima, H., The Geometry of Hessian Structures (2007), Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ · Zbl 1244.53004
[128] Shima, H.; Yagi, K., Geometry of Hessian manifolds, Differ. Geom. Appl., 7, 3, 277-290 (1997) · Zbl 0910.53034
[129] Thomas, TY, A projective theory of affinely connected manifolds, Math. Z., 25, 723-733 (1926) · JFM 52.0732.02
[130] Thomas, TY, The Differential Invariants of Generalized Spaces (1934), New York: Chelsea Publishing Company, New York · Zbl 0009.08503
[131] Tischler, D., On fibering certain foliated manifolds over \(S^1\), Topology, 9, 153-154 (1970) · Zbl 0177.52103
[132] Totaro, B., The curvature of a Hessian metric, Int. J. Math., 15, 4, 369-391 (2004) · Zbl 1058.53032
[133] Veblen, O.; Thomas, TY, The geometry of paths, Trans. Am. Math. Soc., 25, 4, 551-608 (1923) · JFM 50.0504.02
[134] Wang, M.Y.: Einstein metrics from symmetry and bundle constructions. In: Surveys in Differential Geometry: Essays on Einstein Manifolds, Surveys in Differential Geometry, vol. 6, pp. 287-325. International Press, Boston, MA (1999) · Zbl 1003.53037
[135] Whittaker, ET, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: With An Introduction to the Problem of Three Bodies (1959), New York: Cambridge University Press, New York
[136] Wu, H., Some theorems on projective hyperbolicity, J. Math. Soc. Jpn., 33, 1, 79-104 (1981) · Zbl 0458.53016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.