×

Spectral measures and generating series for nimrep graphs in subfactor theory. II: \(SU(3)\). (English) Zbl 1217.46041

Summary: We complete the computation of spectral measures for \(SU(3)\) nimrep graphs arising in subfactor theory, namely, the \({SU(3) \mathcal{ADE}}\) graphs associated with \(SU(3)\) modular invariants and the McKay graphs of finite subgroups of \(SU(3)\). For the \(SU(2)\) graphs, the spectral measures distill onto very special subsets of the semicircle/circle, whilst for the \(SU(3)\) graphs, the spectral measures distill onto very special subsets of the discoid/torus. The theory of nimreps allows us to compute these measures precisely. We have previously determined spectral measures for some nimrep graphs arising in subfactor theory, particularly those associated with all \(SU(2)\) modular invariants, all subgroups of \(SU(2)\), the torus \({\mathbb{T}^2,\,SU(3)}\), and some \(SU(3)\) graphs.
[For part I, see Commun. Math. Phys. 295, No. 2, 363–413 (2010; Zbl 1210.46046).]

MSC:

46L37 Subfactors and their classification

Citations:

Zbl 1210.46046

References:

[1] Banica T., Bisch D.: Spectral measures of small index principal graphs. Commun. Math. Phys. 269, 259–281 (2007) · Zbl 1122.46044 · doi:10.1007/s00220-006-0122-1
[2] Behrend R.E., Pearce P.A., Petkova V.B., Zuber J.-B.: Boundary conditions in rational conformal field theories. Nucl. Phys. B 579, 707–773 (2000) · Zbl 1071.81570 · doi:10.1016/S0550-3213(00)00225-X
[3] Birkhoff G., Mac Lane S.: A survey of modern algebra. Third edition. The Macmillan Co., New York (1965) · Zbl 0863.00001
[4] Böckenhauer J., Evans D.E.: Modular invariants, graphs and {\(\alpha\)}-induction for nets of subfactors. II. Commun. Math. Phys. 200, 57–103 (1999) · Zbl 1151.46316 · doi:10.1007/s002200050523
[5] Böckenhauer J., Evans D.E.: Modular invariants, graphs and {\(\alpha\)}-induction for nets of subfactors. III. Commun. Math. Phys. 205, 183–228 (1999) · Zbl 0949.46030 · doi:10.1007/s002200050673
[6] Böckenhauer J., Evans D.E.: Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors. Commun. Math. Phys. 213, 267–289 (2000) · Zbl 0987.46044 · doi:10.1007/s002200000241
[7] Böckenhauer, J., Evans, D.E.: Modular invariants and subfactors. In: Mathematical physics in mathematics and physics (Siena, 2000), Fields Inst. Commun. 30, Providence, RI: Amer. Math. Soc., 2001, pp. 11–37 · Zbl 1030.46077
[8] Böckenhauer, J., Evans, D.E.: Modular invariants from subfactors. In: Quantum symmetries in theoretical physics and mathematics (Bariloche, 2000), Contemp. Math. 294, Providence, RI: Amer. Math. Soc., 2002, pp. 95–131
[9] Böckenhauer J., Evans D.E., Kawahigashi Y.: On {\(\alpha\)}-induction, chiral generators and modular invariants for subfactors. Commun. Math. Phys. 208, 429–487 (1999) · Zbl 0948.46048 · doi:10.1007/s002200050765
[10] Böckenhauer J., Evans D.E., Kawahigashi Y.: Chiral structure of modular invariants for subfactors. Commun. Math. Phys. 210, 733–784 (2000) · Zbl 0988.46047 · doi:10.1007/s002200050798
[11] Bovier A., Lüling M., Wyler D.: Finite subgroups of SU(3). J. Math. Phys. 22, 1543–1547 (1981) · Zbl 0493.20030 · doi:10.1063/1.525096
[12] Cappelli A., Itzykson C., Zuber J.-B.: The A-D-E classification of minimal and \({A^ {(1)}_ 1}\) conformal invariant theories. Commun. Math. Phys. 113, 1–26 (1987) · Zbl 0639.17008 · doi:10.1007/BF01221394
[13] Desmier P.E., Sharp R.T., Patera J.: Analytic SU(3) states in a finite subgroup basis. J. Math. Phys. 23, 1393–1398 (1982) · Zbl 0512.22016 · doi:10.1063/1.525529
[14] Di Francesco P., Zuber J.-B.: SU(N) lattice integrable models associated with graphs. Nuclear Phys. B 338, 602–646 (1990) · Zbl 0748.17029 · doi:10.1016/0550-3213(90)90645-T
[15] Escobar J.A., Luhn C.: The flavor group {\(\Delta\)}(6n 2). J. Math. Phys. 50, 013524 (2009) · doi:10.1063/1.3046563
[16] Evans D.E.: Fusion rules of modular invariants. Rev. Math. Phys. 14, 709–731 (2002) · Zbl 1030.46074 · doi:10.1142/S0129055X02001351
[17] Evans, D.E.: Critical phenomena, modular invariants and operator algebras. In: Operator algebras and mathematical physics (Constanţa, 2001), Bucharest: Theta, 2003, pp. 89–113 · Zbl 1284.46051
[18] Evans, D.E., Kawahigashi, Y.: Quantum symmetries on operator algebras. Oxford Mathematical Monographs. New York: The Clarendon Press Oxford University Press, 1998 · Zbl 0924.46054
[19] Evans D.E., Pugh M.: Ocneanu Cells and Boltzmann Weights for the \({SU(3) \mathcal{ADE}}\) Graphs. Münster J. Math. 2, 95–142 (2009) · Zbl 1189.81192
[20] Evans D.E., Pugh M.: SU(3)-Goodman-de la Harpe-Jones subfactors and the realisation of SU(3) modular invariants. Rev. Math. Phys. 21, 877–928 (2009) · Zbl 1187.46049 · doi:10.1142/S0129055X09003761
[21] Evans D.E., Pugh M.: A 2-Planar Algebras I. Quantum Topol. 1, 321–377 (2010) · Zbl 1213.46058 · doi:10.4171/QT/8
[22] Evans D.E., Pugh M.: Spectral Measures for Nimrep Graphs in Subfactor Theory. Commun. Math. Phys. 295, 363–413 (2010) · Zbl 1210.46046 · doi:10.1007/s00220-009-0902-5
[23] Evans, D.E., Pugh, M.: The Nakayama permutation of the nimreps associated to SU(3) modular invariants. Preprint: arXiv:1008.1003 (math.OA), 2010 · Zbl 1267.81275
[24] Fairbairn W.M., Fulton T., Klink W.H.: Finite and disconnected subgroups of SU 3 and their application to the elementary-particle spectrum. J. Math. Phys. 5, 1038–1051 (1964) · Zbl 0141.23603 · doi:10.1063/1.1704204
[25] Gannon T.: The classification of affine SU(3) modular invariant partition functions. Commun. Math. Phys. 161, 233–263 (1994) · Zbl 0806.17031 · doi:10.1007/BF02099776
[26] Gepner D.: Fusion rings and geometry. Commun. Math. Phys. 141, 381–411 (1991) · Zbl 0752.17033 · doi:10.1007/BF02101511
[27] Hanany, A., He, Y.-H.: Non-abelian finite gauge theories. J. High Energy Phys. 9902, 013 (1999), Paper 13, 31 pp. (electronic) · Zbl 0965.81106
[28] Kawai T.: On the structure of fusion algebras. Phys. Lett. B 217, 47–251 (1989) · Zbl 0686.20008
[29] Kuperberg G.: The quantum G 2 link invariant. Internat. J. Math. 5, 61–85 (1994) · Zbl 0797.57008 · doi:10.1142/S0129167X94000048
[30] Kuperberg G.: Spiders for rank 2 Lie algebras. Commun. Math. Phys. 180, 109–151 (1996) · Zbl 0870.17005 · doi:10.1007/BF02101184
[31] Luhn, C., Nasri, S., Ramond, P.: Flavor group {\(\Delta\)}(3n 2). J. Math. Phys. 48, 073501, (2007), 21pp.
[32] Miller G.A., Blichfeldt H.F., Dickson L.E.: Theory and applications of finite groups. Dover Publications Inc., New York (1961) · Zbl 0098.25103
[33] Ocneanu, A.: Higher Coxeter Systems. Talk given at MSRI, 2000. http://www.msri.org/publications/ln/msri/2000/subfactors/ocneanu
[34] Ocneanu, A.:The classification of subgroups of quantum SU(N). In: Quantum symmetries in theoretical physics and mathematics (Bariloche, 2000), Contemp. Math. 294, Providence, RI: Amer. Math. Soc., 2002, pp. 133–159 · Zbl 1193.81055
[35] Wassermann A.: Operator algebras and conformal field theory. III. Fusion of positive energy representations of LSU(N) using bounded operators. Invent. Math. 133, 467–538 (1998) · Zbl 0944.46059 · doi:10.1007/s002220050253
[36] Xu F.: New braided endomorphisms from conformal inclusions. Commun. Math. Phys. 192, 349–403 (1998) · Zbl 0908.46044 · doi:10.1007/s002200050302
[37] Yau, S.-T., Yu, Y.: Gorenstein quotient singularities in dimension three. Mem. Amer. Math. Soc. 105 viii+88 (1993) · Zbl 0799.14001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.