×

How the norm one positive definite functions determine a finite group. (English) Zbl 1486.43005

Summary: We study a finite (discrete) group \(G\) through the information we obtain from \[ P_1(G)=\{\langle\pi(\cdot)\xi,\xi\rangle: \ \pi\colon G\to\mathcal{U}(H)\text{ is unitary}, \ \xi\in H, \ \|\xi\|=1\} \] of norm one positive definite functions of \(G\), arising from matrix coefficients of any unitary representation \(\pi\). Below we summarize our results.
(a)
Knowing \(P_1(G)\) as a set of functions, when \(G\) is a finite abelian group we can determine \(G\cong\prod_j \mathbb{Z}_{p_j^{r_j}}\) as a direct product of its cyclic subgroups of prime power orders.
(b)
Knowing \(P_1(G)\) as a multiplicative semigroup, we can construct the subgroup lattice \(L(G)\) of \(G\). With \(L(G)\) in stock, we can tell if \(G\) is cyclic, simple, perfect, solvable, supersolvable, or nilpotent. When \(G'\) is a finite simple group with \(P_1( G')\cong P_1(G)\) as multiplicative semigroups, we show that \(G'\cong G\) as groups.
(c)
Knowing \(P_1(G)\) as a compact convex set, we can construct the group von Neumann algebra \(\operatorname{vN}(G)\) of \(G\). Consequently, when \(G^\prime\) is another finite group with \(P_1(G) \cong P_1( G')\) as convex sets, we show that \(\mathrm{vN}(G)\cong \mathrm{vN}( G')\) as von Neumann algebras. In particular, we can tell if \(G\) is abelian.

MSC:

43A35 Positive definite functions on groups, semigroups, etc.
43A70 Analysis on specific locally compact and other abelian groups
20D99 Abstract finite groups
Full Text: DOI

References:

[1] Alfsen, E. M.; Shultz, F. W., Non-commutative spectral theory for affine function spaces on convex sets, Mem. Am. Math. Soc., 172 (1976), 120 pp. · Zbl 0337.46013
[2] Arendt, W.; De Cannière, J., Order isomorphisms of Fourier algebras, J. Funct. Anal., 50, 1, 1-7 (1983) · Zbl 0506.43001
[3] Cheng, Y.-H., Subalgebras generated by extreme points in Fourier-Stieltjes algebras of locally compact groups, Stud. Math., 202, 3, 289-302 (2011) · Zbl 1228.43006
[4] Cheng, Y.-H.; Forrest, B. E.; Spronk, N., On the subalgebra of a Fourier-Stieltjes algebra generated by pure positive definite functions, Monatshefte Math., 171, 3-4, 305-314 (2013) · Zbl 1279.43007
[5] Eymard, P., L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. Fr., 92, 181-236 (1964) · Zbl 0169.46403
[6] Folland, G. B., A Course in Abstract Harmonic Analysis (1995), CRC Press: CRC Press Boca Raton · Zbl 0857.43001
[7] Forrest, B. E.; Lee, H. H.; Samei, E., Projectivity of modules over Fourier algebras, Proc. Lond. Math. Soc., 102, 4, 697-730 (2011) · Zbl 1229.43005
[8] Ilie, M.; Spronk, N., Completely bounded homomorphisms of the Fourier algebras, J. Funct. Anal., 225, 2, 480-499 (2005) · Zbl 1077.43004
[9] Isaacs, I. M., Finite Group Theory, Graduate Studies in Mathematics, vol. 92 (2008), American Mathematical Society · Zbl 1169.20001
[10] Kaniuth, E.; Lau, A. T.-M., Fourier and Fourier-Stieltjes Algebras on Locally Compact Groups, Mathematical Surveys and Monographs, vol. 231 (2018), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 1402.43001
[11] Kaniuth, E.; Lau, A. T.-M.; Ülger, A., The Rajchman algebra \(B_0(G)\) of a locally compact group G, Bull. Sci. Math., 140, 3, 273-302 (2016) · Zbl 1337.43002
[12] Lau, A. T.-M.; Ng, C.-K.; Wong, N.-C., Normal states are determined by their facial distances, Bull. Lond. Math. Soc., 52, 3, 505-514 (2020) · Zbl 1480.46075
[13] Lau, A. T.-M.; Pham, H. L., Characterisations of Fourier and Fourier-Stieltjes algebras on locally compact groups, Adv. Math., 289, 844-887 (2016) · Zbl 1335.43001
[14] Lau, A. T.-M.; Pham, H. L., Generalised F-algebras as predual algebras of JBW*-triples and characterisations of the Fourier algebras on locally compact groups, Adv. Math., 355, Article 106777 pp. (2019), 52 pp. · Zbl 1423.43006
[15] Lau, A. T.-M.; Zhang, Y., Finite-dimensional invariant subspace property and amenability for a class of Banach algebras, Trans. Am. Math. Soc., 368, 3755-3775 (2016) · Zbl 1376.46036
[16] Lee, H. H.; Ludwig, J.; Samei, E.; Spronk, N., Weak amenability of Fourier algebras and local synthesis of the anti-diagonal, Adv. Math., 292, 11-41 (2016) · Zbl 1342.43005
[17] Lee, H. H.; Samei, E.; Spronk, N., Similarity degree of Fourier algebras, J. Funct. Anal., 271, 593-609 (2016) · Zbl 1354.46050
[18] Li, C. K., Lecture notes on numerical ranges (2005)
[19] Ono, T., An analytical proof of the fundamental theorem on finite abelian groups, Proc. Jpn. Acad., 33, 10, 587 (1957) · Zbl 0083.02002
[20] Pedersen, G. K., C*-Algebras and Their Automorphism Groups (1979), Academic Press: Academic Press London · Zbl 0416.46043
[21] Runde, V.; Viselter, A., On positive definiteness over locally compact quantum groups, Can. J. Math., 68, 1067-1095 (2016) · Zbl 1352.22004
[22] Schmidt, R., Subgroup Lattices of Groups, Expositions in Math., vol. 14 (1994), Walter de Gruyter · Zbl 0843.20003
[23] Serre, J.-P., Linear Representations of Finite Groups, GTM, vol. 42 (1977), Springer-Verlag: Springer-Verlag New York · Zbl 0355.20006
[24] Walter, M. E., W*-algebras and nonabelian harmonic analysis, J. Funct. Anal., 11, 17-38 (1972) · Zbl 0242.22010
[25] Wong, Y.-L., Fourier Algebras of finite groups (2019), National Chung Hsing University: National Chung Hsing University Taichung, Taiwan, Master Thesis
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.