×

An ancestral process with selection in an ecological community. (English) Zbl 1411.92307

Summary: An ecological community is a geographical area composed of two or more species. The ancestral histories of individuals from the same and different species in an ecological community may be interconnected due to direct and indirect interactions. Here, we present a model of the ancestral history of an ecological community that is built upon the framework of coalescent and ancestral graph theory. The model includes selection, whereby the fitness of an ancestral lineage is a function of both its abiotic environment and interactions with individuals from its biotic environment. The model also allows for metacommunity structure. We first define a forward-time percolation process characterizing the evolution of an ecological community and then present its corresponding backward-time graphical model in the limit of large population sizes. Next, we present expectations of properties of phenotypes in the graph. These expectations give insight into the structure of phenotypic variation and trait-environment covariances across local communities, including the effects of drift, intra and inter-species genealogical structure and the sampling effects of selection. In addition, we derive expectations for multivariate phenotypic diversity in a community assuming neutrality and compare this to expectations with stabilizing selection.

MSC:

92D40 Ecology
92D15 Problems related to evolution
05C90 Applications of graph theory

Software:

abc
Full Text: DOI

References:

[1] Barton, N.; Etheridge, A. M., The effect of selection on genealogies, Genetics, 166, 1115-1131 (2004)
[2] Beaumont, M. A., Approximate bayesian computation in evolution and ecology, Ann. Rev. Ecol. Evol. Syst., 41, 379-406 (2010)
[3] Beaumont, M. A.; Zhang, W.; Balding, D. J., Approximate bayesian computation in population genetics, Genetics, 162, 2025-2035 (2002)
[4] Cannings, C., The latent roots of certain markov chains arising in genetics: a new approach, I. Haploid models. Adv. Appl. Prob., 6, 260-290 (1974) · Zbl 0284.60064
[5] Cavalli-Sforza, L. L.; Piazza, A., Analysis of evolution: evolutionary rates, independence and treeness, Theor. Pop. Biol., 8, 127-165 (1975) · Zbl 0327.92009
[6] Cavender-Bares, J.; Kozak, K. H.; Fine, P. V.A.; Kembel, S. W., The merging of community ecology and phylogenetic biology, Ecol. Lett., 12, 693-715 (2009)
[7] Csillery, K.; Blum, M. G.B.; Gaggiotti, O. E.; Francois, O., Approximate bayesian computation (ABC) in practice, Trends Ecol. Evol., 25, 410-418 (2010)
[8] Dennison, M.; Baker, A. J., Morphometric variability in continental and atlantic island populations of chaffinches (Fringilla coelebs), Evolution, 45, 29-39 (1991)
[9] Denniston, C.; Crow, J. F., Alternative fitness models with the same allele frequency dynamics, Genetics, 125, 201-205 (1990)
[10] Donnelly, P.; Kurtz, T. G., Genealogical models for fleming-viot models with selection and recombination, Ann. Appl. Probab., 9, 1091-1148 (1999) · Zbl 0964.60075
[11] Ewens, W. J., Mathematical Population Genetics: I, Theoretical Introduction (2004), Springer: Springer New York · Zbl 1060.92046
[12] Felsenstein, J., Phylogenies and the comparative method, Am. Nat., 125, 1-15 (1985)
[13] Felsenstein, J., Phylogenies and quantitative characters. ann, Rev. Ecol. Syst., 19, 445-471 (1988)
[14] Fernhead, P.; Donnelly, P., Estimating recombination rates from population genetic data, Genetics, 159, 1299-1318 (2001)
[15] Griffiths, R. C., The Two-locus Ancestral Graph, (Slatkin, M.; Veuille, M., Modern Developments in Theoretical Population Genetics: The Legacy of Gustave Malecot (1991), Oxford University Press: Oxford University Press Oxford) · Zbl 0781.92022
[16] Griswold, C. K., Epistasis can accelerate adaptive diversification in haploid asexual populations, Proc. Roy. Soc. B, 282, 20142648 (2015)
[17] Griswold, C. K., Additive genetic variation and evolvability of a multivariate trait can be increased by epistatic gene action, J. Theoret. Biol., 387, 241-257 (2015) · Zbl 1343.92314
[18] Griswold, C. K.; Logsdon, B.; Gomulkiewicz, R., Neutral evolution of multiple quantitative characters, Geneal. Approach Genet., 176, 455-466 (2007)
[19] Hojsgaard, S.; Lauritzen, S.; Edwards, D., Graphical models in r (2012), Springer: Springer New York · Zbl 1286.62005
[20] Hudson, R. R., Properties of a neutral allele model with intrgenic recombination, Theor. Pop. Biol., 23, 183-201 (1983) · Zbl 0505.62090
[21] Hutchinson, G. E., Concluding remarks, Cold Spring Harb. Symp. Quant. Biol., 22, 415-427 (1957)
[22] Kingman, J. F.C., The coalescent, Stochastic Process. Appl., 13, 235-248 (1982) · Zbl 0491.60076
[23] Kingman, J. F.C., On the genealogy of large populations, J. Appl. Prob., 19A, 27-43 (1982) · Zbl 0516.92011
[24] Krone, S. M.; Neuhauser, C., Ancestral processes with selection, Theoret. Pop. Biol., 51, 210-237 (1997) · Zbl 0910.92024
[25] Kühn, I.; Nobis, M. P.; Durka, W., Combining spatial and phylogenetic eigenvector filtering in trait analysis, Global Ecol. Biogeogr., 18, 745-758 (2009)
[26] Lauritzen, S.; Sadeghi, K., Unifying markov properties for graphical models, Ann. Statist., 46, 2251-2278 (2018) · Zbl 1408.62122
[27] Legendre, P.; Legendre, L., Numerical ecology (2012), Elsevier: Oxford
[28] Matlack, G. R.; Harper, J. L., Spatial distribution and the perfermance of individual plants in a natural population of silene dioica, Oecologia, 70, 121-127 (1986)
[29] Mittelbach, G. G.; Schemske, D. W., Ecological and evolutionary perspectives on community assembly, Trens Ecol. Evol., 30, 241-247 (2015)
[30] Moran, P. A.P., Statistical processes of evolutionary theory (1962), Clarendon Press: Clarendon Press Oxford · Zbl 0119.35901
[31] Mouquet, N.; Devictor, V.; Meynard, C. N.; Munoz, F.; . Bersier, L. F.; Chave, J., Ecophylogenetics: advances and perspectives, Biol. Rev., 87, 769-785 (2012)
[32] Neuhauser, C., The ancestral graph and gene genealogy under frequency-dependent selection theoret, Pop. Biol., 56, 203-214 (1999) · Zbl 0956.92026
[33] Neuhauser, C.; Krone, S. M., The genealogy of samples in models with selection, Genetics, 145, 519-534 (1997)
[34] Notohara, M., The coalescent and the genealogical process in geographically structure population, J. Math. Biol., 29, 59-75 (1990) · Zbl 0726.92014
[35] Nuismer, S. L.; Harmon, L. J., Predicting rates of interspecific interaction from phylogenetic trees, Ecol. Lett., 18, 17-27 (2015)
[36] O’Fallon, B. D.; Seger, J.; Adler, F. R., A continuous-state coalescent and the impact of weak selection on the structure of gene genealogies, Mol. Biol. Evol., 5, 1162-1172 (2010)
[37] Pavoine, S.; Vela, E.; Gachet, S.; de Bélair, G.; Bonsall, M. B., Linking patterns in phylogeny, traits, abiotic variables and space: a novel approach to linking environmental filtering and plant community assembly, J. Ecol., 99, 165-175 (2011)
[38] Pennell, M. W.; Harmon, L. J., An integrative view of phylogenetic comparative methods: connections to population genetics, community ecology, and paleobiology, Ann. N.Y. Acad. Sci., 1289, 90-105 (2013)
[39] Pianka, E. R., Niche overlap and diffuse competition, Proc. Natl. Acad. Sci., 71, 2141-2145 (1974)
[40] Rao, C. R., The use and interpretation of principal component analysis in applied research, Sankhya Ser. A, 26, 329-358 (1964) · Zbl 0137.37207
[41] Raynaud, X.; Nunan, N., Spatial ecology of bacteria at the microscale in soil, PLoS ONE, 9 (2014)
[43] Revell, L. J.; Harrison, A. S., PCCA: A program for phylogenetic canonical correlation analy- sis, Bioinformatics, 24, 1018-1020 (2008)
[44] Ricklefs, R. E., Community diversity: relative roles of local and regional processes, Science, 235, 167-171 (1987)
[45] Ricklefs, R. E.; Jenkins, D. G., Biogeography and ecology: towards the integration of two disciplines, Proc. Roy. Soc. B, 366, 2438-2448 (2011)
[46] Steel, M.; Mac Kenzie, A., Properties of phylogenetic trees generated by yule-type speciation models, Math Biosci, 170, 91-112 (2001) · Zbl 0977.92017
[47] Tajima, F., Evolutionary relationship of DNA sequences in finite populations, Genetics, 105, 437-460 (1983)
[48] Thompson, J. N., 2005. The geographic mosaic of coevolution. U. Chicago: Chicago.; Thompson, J. N., 2005. The geographic mosaic of coevolution. U. Chicago: Chicago.
[49] Uhlenbeck, G. E.; Ornstein, L. S., On the theory of brownian motion, Phys. Rev., 36, 823-841 (1930) · JFM 56.1277.03
[50] Uyeda, J. C.; Caetano, D. S.; Pennell, M. W., Comparative analysis of principal components can be misleading, Syst. Biol., 64, 677-689 (2015)
[51] Velland, M., The theory of ecological communities (2016), Princeton U.: Princeton U. Princeton
[52] Wagner, G.; Altenberg, L., Perspective: complex adaptations and the evolution of evolvability, Evolution, 50, 967-976 (1996)
[53] Wakeley, J., Coalescent theory (2009), Roberts & Co.: Roberts & Co. Greenwood Village · Zbl 1366.92001
[54] Watanbe, K.; Monaghan, M. T., Comparative tests of the species-genetic diversity correlation at neutral and nonneutral locis in four species of stream insect, Evolution, 71, 1755-1764 (2017)
[55] Webb, C. O.; Ackerly, D. D.; McPeek, M. A.; Donoghue, M. J., Phylogenies and community ecology, Annu. Rev. Ecol. Syst., 33, 475-505 (2002)
[56] Weber, M. G.; Wagner, C. E.; Best, R. J., Evolution in a community context: on integrating ecological interactions and macroevolution, Trends Ecol. Evol., 32, 291-304 (2017)
[57] Whitlock, M. C., Neutral additive genetic variance in a metapopulation, Genet. Res., 74, 215-221 (1999)
[58] Wilks, S. S., Certain generalization in the analysis of variance, Biometrika, 24, 471-494 (1932) · JFM 58.1172.02
[59] Wright, I.; Reich, P. B.; Cornelissen, J. H.C., Modulation of leaf economic traits and trait relationships by climate, Global Ecol. Biogeogr., 14, 411-421 (2005)
[60] Yang, Z.; Rannala, B., Bayesian species delimitation using multilocus sequence data, Proc. Natl. Acad. Sci., 107, 9264-9269 (2010)
[61] Yoder, J. B.; Nuismer, S. L., When does coevolution promote diversification?, Am. Nat., 176, 802-817 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.