×

Exponential stability of fast driven systems, with an application to celestial mechanics. (English) Zbl 1472.34104

The authors consider a \((n+1+m)\)-dimensional vector-filed \(N\) which, expressed in local coordinates \((I,y,\psi)\in \mathbb P=\mathbb I\times \mathbb Y\times \mathbb T^m\), (where \(\mathbb I\subset \mathbb R^n\), \(\mathbb Y\subset \mathbb R^n\) are open and connected; \(\mathbb T=\mathbb R/(2\pi \mathbb Z)\) is the standard torus), has the form \[N(I,y)=v(I,y)\partial_y+\omega(I,y)\partial_{\psi}.\] Such systems have been extensively investigated in the absence of the coordinate \(y\) and it is known that, after a small perturbing term is switched on, the normalized actions \(I\) turn to have exponential small variations compared to the size of the perturbation. The authors obtain the same result as for the classical situation. In addition, they observe that no trapping argument is needed, as no small denominator arises. They use the result to prove that the level sets of certain function called Euler integral have exponential small variations in a short time, closely to collisions.

MSC:

34D20 Stability of solutions to ordinary differential equations
34C20 Transformation and reduction of ordinary differential equations and systems, normal forms
70F10 \(n\)-body problems
37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion

References:

[1] Alekseev, V. M., Final motions in the three-body problem and symbolic dynamics, Uspekhi Mat. Nauk., 36, 4(220), 161-176 (1981), 248 · Zbl 0503.70006
[2] Alexeyev, V. M., Sur l’allure finale du mouvement dans le problème des trois corps, (Actes Du Congrès International Des Mathématiciens (Nice, 1970), Tome, Vol. 2 (1971)), 893-907 · Zbl 0266.70005
[3] Arnold, V. I., Small denominators and problems of stability of motion in classical and celestial mechanics, Russian Math. Surv., 18, 6, 85-191 (1963) · Zbl 0135.42701
[4] Bolotin, S., Second species periodic orbits of the elliptic 3 body problem, Celestial Mech. Dynam. Astronom., 93, 1-4, 343-371 (2005) · Zbl 1129.70006
[5] Bolotin, S., Shadowing chains of collision orbits, Discrete Contin. Dyn. Syst., 14, 2, 235-260 (2006) · Zbl 1093.70005
[6] Bolotin, S., Symbolic dynamics of almost collision orbits and skew products of symplectic maps, Nonlinearity, 19, 9, 2041-2063 (2006) · Zbl 1193.70025
[7] Bolotin, S.; MacKay, R. S., Nonplanar second species periodic and chaotic trajectories for the circular restricted three-body problem, Celestial Mech. Dynam. Astronom., 94, 4, 433-449 (2006) · Zbl 1094.70010
[8] Bolotin, S.; Negrini, P., Variational approach to second species periodic solutions of Poincaré of the 3 body problem, Discrete Contin. Dyn. Syst., 33, 3, 1009-1032 (2013) · Zbl 1263.70012
[9] F. Cardin, M. Guzzo, Integrability of the spatial restricted three-body problem near collisions. arXiv:1809.01257. · Zbl 1461.70015
[10] Cardin, F.; Guzzo, M., Integrability of the spatial restricted three-body problem near collisions (an announcement), Lincei Mat. Appl., 30, Article 195204 pp. (2019) · Zbl 1461.70015
[11] Celletti, A.; Chierchia, L., Construction of stable periodic orbits for the spin-orbit problem of celestial mechanics, Regul. Chaotic Dyn., 3, 3, 107-121 (1998), J. Moser at 70 (Russian) · Zbl 0988.37098
[12] Chazy, J., Sur l’allure du mouvement dans le problème des trois corps quand le temps croît indéfiniment, Ann. Sci. École Norm. Sup. (3), 39, 29-130 (1922) · JFM 48.1074.04
[13] Chenciner, A.; Llibre, J., A note on the existence of invariant punctured tori in the planar circular restricted three-body problem, Ergodic Theory Dynam. Syst., 8, *(Charles Conley Memorial Issue), 63-72 (1988) · Zbl 0657.70016
[14] Chierchia, L.; Pinzari, G., Planetary Birkhoff normal forms, J. Mod. Dyn., 5, 4, 623-664 (2011) · Zbl 1320.70009
[15] Chierchia, L.; Pinzari, G., The planetary \(N\)-body problem: symplectic foliation, reductions and invariant tori, Invent. Math., 186, 1, 1-77 (2011) · Zbl 1316.70010
[16] Di Ruzza, S.; Daquin, J.; Pinzari, G., Symbolic dynamics in a binary asteroid system, Commun. Nonlinear Sci. Numer. Simul., 91, 16, Article 105414 pp. (2020) · Zbl 1476.37097
[17] Féjoz, J., Quasiperiodic motions in the planar three-body problem, J. Differential Equations, 183, 2, 303-341 (2002) · Zbl 1057.70006
[18] Féjoz, J., Démonstration du ‘théorème d’Arnold’ sur la stabilité du système planétaire (d’après Herman), Ergodic Theory Dynam. Syst., 24, 5, 1521-1582 (2004) · Zbl 1087.37506
[19] Fleischer, S.; Knauf, A., Improbability of collisions in \(n\)-body systems, Arch. Ration. Mech. Anal., 234, 3, 1007-1039 (2019) · Zbl 1448.70029
[20] Fleischer, S.; Knauf, A., Improbability of wandering orbits passing through a sequence of Poincaré surfaces of decreasing size, Arch. Ration. Mech. Anal., 231, 3, 1781-1800 (2019) · Zbl 1459.37018
[21] Freitag, E.; Busam, R., Complex Analysis (2005), Universitext. Springer-Verlag: Universitext. Springer-Verlag Berlin, Translated from the 2005 German edition by Dan Fulea · Zbl 1085.30001
[22] Giorgilli, A.; Locatelli, U.; Sansottera, M., Kolmogorov and Nekhoroshev theory for the problem of three bodies, Celestial Mech. Dynam. Astronom., 104, 1-2, 159-173 (2009) · Zbl 1165.70010
[23] Guardia, M.; Kaloshin, V.; Zhang, J., Asymptotic density of collision orbits in the restricted circular planar 3 body problem, Arch. Ration. Mech. Anal., 233, 2, 799-836 (2019) · Zbl 1471.70008
[24] Guzzo, M.; Chierchia, L.; Benettin, G., The steep Nekhoroshev’s theorem, Comm. Math. Phys., 342, 2, 569-601 (2016) · Zbl 1337.37038
[25] Guzzo, M.; Efthymiopoulos, C.; Paez, R. I., Semi-analytic computations of the speed of arnold diffusion along single resonances in a priori stable hamiltonian systems, J. Nonlinear Sci., 30, 3, 851-901 (2020) · Zbl 1443.37047
[26] Henrard, J., On Poincaré’s second species solutions, Celestial Mech., 21, 1, 83-97 (1980) · Zbl 0422.70009
[27] Laskar, J.; Robutel, P., Stability of the planetary three-body problem. I. Expansion of the planetary Hamiltonian, Celestial Mech. Dynam. Astronom., 62, 3, 193-217 (1995) · Zbl 0837.70008
[28] Levi-Civita, T., Sur la régularisation qualitative du problème restreint des trois corps, Acta Math., 30, 305-327 (1906) · JFM 37.0739.01
[29] Locatelli, U.; Giorgilli, A., Invariant tori in the Sun-Jupiter-Saturn system, Discrete Contin. Dyn. Syst. Ser. B, 7, 2, 377-398 (2007), (electronic) · Zbl 1129.70015
[30] Marco, J. P.; Niederman, L., Sur la construction des solutions de seconde espèce dans le problème plan restreint des trois corps, Ann. Inst. H. Poincaré Phys. Théor., 62, 3, 211-249 (1995) · Zbl 0821.70006
[31] Moeckel, R. B., Orbits near triple collision in the three-body problem, ProQuest LLC, Ann Arbor, MI (1980), The University of Wisconsin - Madison, (Thesis (Ph.D.)
[32] Moeckel, R., Orbits of the three-body problem which pass infinitely close to triple collision, Amer. J. Math., 103, 6, 1323-1341 (1981) · Zbl 0475.70008
[33] Moeckel, R., Chaotic dynamics near triple collision, Arch. Ration. Mech. Anal., 107, 1, 37-69 (1989) · Zbl 0697.70021
[34] Moeckel, R., Symbolic dynamics in the planar three-body problem, Regul. Chaotic Dyn., 12, 5, 449-475 (2007) · Zbl 1229.70033
[35] Moser, J., A new technique for the construction of solutions of nonlinear differential equations, Proc. Natl. Acad. Sci. USA, 47, 1824-1831 (1961) · Zbl 0104.30503
[36] Moser, J., On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1962, 1-20 (1962) · Zbl 0107.29301
[37] Nash, J., The imbedding problem for Riemannian manifolds, Ann. of Math. (2), 63, 20-63 (1956) · Zbl 0070.38603
[38] Nehorošev, N. N., An exponential estimate of the time of stability of nearly integrable hamiltonian systems, Uspehi Mat. Nauk., 32, 6(198), 5-66 (1977), 287 · Zbl 0389.70028
[39] Pinzari, G., On the Kolmogorov Set for Many-Body Problems (2009), Università Roma Tre, (Ph.D. thesis)
[40] Pinzari, G., A first integral to the partially averaged newtonian potential of the three-body problem, Celestial Mech. Dynam. Astronom., 131, 5, 22 (2019) · Zbl 1448.70022
[41] Pinzari, G., Euler Integral and perihelion librations, Discrete Contin. Dyn. Syst., 40, 12, 6919-6943 (2020) · Zbl 1461.70016
[42] Pinzari, G., Perihelion librations in the secular three-body problem, J. Nonlinear Sci., 30, 4, 1771-1808 (2020) · Zbl 1453.70006
[43] Poincaré, H., Les Méthodes Nouvelles de la MéCanique Céleste (1892), Gauthier-Villars: Gauthier-Villars Paris · JFM 24.1130.01
[44] Pöschel, J., Nekhoroshev estimates for quasi-convex Hamiltonian systems, Math. Z., 213, 2, 187-216 (1993) · Zbl 0857.70009
[45] D.G. Saari, Improbability of collisions in Newtonian gravitational systems. Trans. Amer. Math. Soc. 162:267-271; erratum, ibid. 168 (1972), 521, 1971. · Zbl 0231.70007
[46] Saari, D. G., Improbability of collisions in Newtonian gravitational systems, II. Trans. Amer. Math. Soc., 181, 351-368 (1973) · Zbl 0283.70007
[47] Volpi, M.; Locatelli, U.; Sansottera, M., A reverse KAM method to estimate unknown mutual inclinations in exoplanetary systems, Celestial Mech. Dynam. Astronom., 130, 5, 36 (2018) · Zbl 1391.70034
[48] Zhao, L., Quasi-periodic almost-collision orbits in the spatial three-body problem, Comm. Pure Appl. Math., 68, 12, 2144-2176 (2015) · Zbl 1393.70029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.