×

Oscillatory motions for the restricted planar circular three body problem. (English) Zbl 1398.70030

Authors’ abstract: The restricted three body problem models the motion of a massless body under the influence of the Newtonian gravitational force caused by two other bodies called the primaries. When they move along circular Keplerian orbits and the third body moves in the same plane, one has the restricted planar circular three body problem (RPC3BP). In suitable coordinates, it is a Hamiltonian system of two degrees of freedom. The conserved energy is usually called the Jacobi constant. J. Llibre and C. Simó [Math. Ann. 248, No. 2, 153–184 (1980; Zbl 0505.70010)] proved the existence of oscillatory motions for this system. That is, orbits which leave every bounded region but which return infinitely often to some fixed bounded region. To prove their existence they had to assume the ratio between the masses of the primaries to be small enough. In this paper we prove the existence of such motions for any value of the mass ratio \(\mu\) closing the problem of existence of oscillatory motions in the RPC3BP. To obtain such motions, we restrict ourselves to the level sets of the Jacobi constant. We show that, for any value of the mass ratio and for large values of the Jacobi constant, there exist transversal intersections between the stable and unstable manifolds of infinity in these level sets. These transversal intersections guarantee the existence of a symbolic dynamics that creates the oscillatory orbits. The main achievement is to prove the existence of these orbits without assuming the mass ratio \(\mu\) small. When \(\mu\) is not small, this transversality can not be checked by means of classical perturbation theory. Since our method is valid for all values of \(\mu\), we are able to detect a curve in the parameter space, formed by \(\mu\) and the Jacobi constant, where cubic homoclinic tangencies between the invariant manifolds of infinity appear.

MSC:

70F07 Three-body problems

Citations:

Zbl 0505.70010

References:

[1] Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Dynamical Systems III. Encyclopaedia of Mathematical Sciences, vol. 3. Springer, Berlin (1988) · Zbl 0741.70007
[2] Alekseev, V.M.: Quasirandom oscillations and qualitative problems in celestial mechanics. In: Ninth Mathematical Summer School (Kaciveli, 1971) (Russian). Three papers on smooth dynamical systems, pp. 212-341. Izdanie Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev (1972)
[3] Alexeyev, V.M.: Sur l’allure finale du mouvement dans le problème des trois corps. Actes du Congrès International des Mathématiciens (Nice. 1970), Tome 2, pp. 893-907. Gauthier-Villars, Paris (1971) · Zbl 0266.70005
[4] Alekseev, V.M.: Final motions in the three-body problem and symbolic dynamics. Uspekhi Mat. Nauk 36(4(220)), 161-176, 248 (1981) · Zbl 0503.70006
[5] Baldomá, I., Fontich, E.: Exponentially small splitting of invariant manifolds of parabolic points. Mem. Am. Math. Soc. 167(792), x-83 (2004) · Zbl 1040.37050
[6] Baldomá, I., Fontich, E., Guàrdia, M., Seara, T.M.: Exponentially small splitting of separatrices beyond Melnikov analysis: rigorous results. J. Differ. Equ. 253(12), 3304-3439 (2012) · Zbl 1271.34050 · doi:10.1016/j.jde.2012.09.003
[7] Bolotin, Sergey: Symbolic dynamics of almost collision orbits and skew products of symplectic maps. Nonlinearity 19(9), 2041-2063 (2006) · Zbl 1193.70025 · doi:10.1088/0951-7715/19/9/003
[8] Delshams, A., Kaloshin, V., de la Rosa, A., Seara, T.: Parabolic orbits in the restricted three body problem. (2014). http://arxiv.org/abs/1501.01214 · Zbl 1446.70024
[9] Delshams, A., Seara, T.M.: An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum. Commun. Math. Phys. 150(3), 433-463 (1992) · Zbl 0765.70016 · doi:10.1007/BF02096956
[10] Delshams, A., Seara, T.M.: Splitting of separatrices in Hamiltonian systems with one and a half degrees of freedom. Math. Phys. Electron. J. 3(4), (1997) · Zbl 0891.58035
[11] Erdélyi, A.: Asymptotic Expansions. Dover Publications Inc., New York (1956) · Zbl 0070.29002
[12] Gelfreich, V.G.: Melnikov method and exponentially small splitting of separatrices. Phys. D 101(3-4), 227-248 (1997) · Zbl 0896.70011 · doi:10.1016/S0167-2789(96)00133-9
[13] Gelfreich, V.G.: Separatrix splitting for a high-frequency perturbation of the pendulum. Russ. J. Math. Phys. 7(1), 48-71 (2000) · Zbl 1066.34059
[14] Galante, J., Kaloshin, V.: Destruction of invariant curves using the ordering condition. http://www.terpconnect.umd.edu/ vkaloshi (2010) · Zbl 1269.70016
[15] Galante, J., Kaloshin, V.: The method of spreading cumulative twist and its application to the restricted circular planar three body problem. http://www.terpconnect.umd.edu/ vkaloshi (2010) · Zbl 0264.70007
[16] Galante, J., Kaloshin, V.: Destruction of invariant curves in the restricted circular planar three-body problem by using comparison of action. Duke Math. J. 159(2), 275-327 (2011) · Zbl 1269.70016 · doi:10.1215/00127094-1415878
[17] Gorodetski, A., Kaloshin, V.: Hausdorff dimension of oscillatory motions for restricted three body problems. http://www.terpconnect.umd.edu/ vkaloshi (2012) · Zbl 0505.70010
[18] Guardia, M., Olivé, C., Seara, T.: Exponentially small splitting for the pendulum: a classical problem revisited. J. Nonlinear Sci. 20(5), 595-685 (2010) · Zbl 1219.34001 · doi:10.1007/s00332-010-9068-8
[19] Guardia, M.: Splitting of separatrices in the resonances of nearly integrable Hamiltonian systems of one and a half degrees of freedom. Discret. Contin. Dyn. Syst. A. 33(7), 2829-2859 (2012) · Zbl 1307.37033 · doi:10.3934/dcds.2013.33.2829
[20] Holmes, P., Marsden, J., Scheurle, J.: Exponentially small splittings of separatrices with applications to KAM theory and degenerate bifurcations. In: Hamiltonian Dynamical Systems (Boulder, CO, 1987). Contemp. Math., vol. 81. American Mathematical Society, Providence (1988) · Zbl 0685.70017
[21] Katok, A., Hasselblatt, B.: Introduction to the modern theory of dynamical systems. Encyclopedia of Mathematics and its Applications, vol. 54. Cambridge University Press, Cambridge (1995) · Zbl 0878.58020
[22] Lochak, P., Marco, J.-P., Sauzin, D.: On the splitting of invariant manifolds in multidimensional near-integrable Hamiltonian systems. Mem. Am. Math. Soc. 163(775), viii+145 (2003) · Zbl 1038.70001
[23] Llibre, J., Simó, C.: Oscillatory solutions in the planar restricted three-body problem. Math. Ann. 248(2), 153-184 (1980) · Zbl 0505.70010 · doi:10.1007/BF01421955
[24] Llibre, J., Simó, C.: Some homoclinic phenomena in the three-body problem. J. Differ. Equ. 37(3), 444-465 (1980) · Zbl 0445.70005 · doi:10.1016/0022-0396(80)90109-6
[25] McGehee, R.: A stable manifold theorem for degenerate fixed points with applications to celestial mechanics. J. Differ. Equ. 14, 70-88 (1973) · Zbl 0264.70007 · doi:10.1016/0022-0396(73)90077-6
[26] Melnikov, V.K.: On the stability of the center for time periodic perturbations. Trans. Mosc. Math. Soc. 12, 1-57 (1963) · Zbl 0135.31001
[27] Meyer, K.R., Hall, G.R.: Introduction to Hamiltonian Dynamical Systems and the \[NN\]-Body Problem. Springer, New York (1992) · Zbl 0743.70006 · doi:10.1007/978-1-4757-4073-8
[28] Moeckel, R.: Heteroclinic phenomena in the isosceles three-body problem. SIAM J Math Anal 15(5), 857-876 (1984) · Zbl 0593.70009 · doi:10.1137/0515065
[29] Moser, J.: Stable and Random Motions in Dynamical Systems. Princeton University Press, Princeton (1973). (With special emphasis on celestial mechanics, Hermann Weyl Lectures, the Institute for Advanced Study, Princeton, NJ, Ann. Math. Stud., No. 77) · Zbl 0271.70009
[30] Martínez, R., Pinyol, C.: Parabolic orbits in the elliptic restricted three body problem. J. Differ. Equ. 111(2), 299-339 (1994) · Zbl 0804.70009 · doi:10.1006/jdeq.1994.1084
[31] Neĭshtadt, A.I.: The separation of motions in systems with rapidly rotating phase. Prikl. Mat. Mekh. 48(2), 197-204 (1984) · Zbl 0571.70022
[32] Poincaré, H.: Sur le problème des trois corps et les équations de la dynamique. Acta Math. 13, 1-270 (1890) · JFM 22.0907.01 · doi:10.1007/BF02392514
[33] Sauzin, D.: A new method for measuring the splitting of invariant manifolds. Ann. Sci. École Norm. Sup. (4), 34(2), 159-221 (2001) · Zbl 0987.37061
[34] Sitnikov, K.: The existence of oscillatory motions in the three-body problems. Sov. Phys. Dokl. 5, 647-650 (1960) · Zbl 0108.18603
[35] Treschev, D.: Separatrix splitting for a pendulum with rapidly oscillating suspension point. Russ. J. Math. Phys. 5(1), 63-98 (1997) · Zbl 0947.34034
[36] Xia, Z.: Mel’nikov method and transversal homoclinic points in the restricted three-body problem. J. Differ. Equ. 96(1), 170-184 (1992) · Zbl 0741.70007 · doi:10.1016/0022-0396(92)90149-H
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.