×

Oscillatory orbits in the restricted planar four body problem. (English) Zbl 1476.70028

Summary: The restricted planar four body problem describes the motion of a massless body under the Newtonian gravitational force of other three bodies (the primaries), and the motion of the primaries gives us general solutions of the three body problem. A trajectory is called oscillatory if it goes arbitrarily faraway but returns infinitely many times to the same bounded region. We prove the existence of such type of trajectories provided the primaries evolve in suitable periodic orbits.

MSC:

70F07 Three-body problems
70F05 Two-body problems
37N05 Dynamical systems in classical and celestial mechanics

References:

[1] Alekseev V 1981 Final motions in the three-body problem and symbolic dynamics Russ. Math. Surv.36 161-76 · Zbl 0503.70006 · doi:10.1070/rm1981v036n04abeh003025
[2] Arnold V 1964 Instability Of Dynamical Systems With Several Degrees Of Freedom ((Berlin: : Springer)) p 26
[3] Bernard P, Kaloshin K and Zhang K 2017 Arnold diffusion in arbitrary degrees of freedom and normally hyperbolic invariant cylinders Acta Math.217 1-79 · Zbl 1368.37068 · doi:10.1007/s11511-016-0141-5
[4] Capinski M and Gidea M 2018 Arnold diffusion, quantitative estimates and stochastic behavior in the three-body problem (arXiv:1812.03665)
[5] Capinski M, Gidea M and De la Llave R 2016 Arnold diffusion in the planar elliptic restricted three-body problem: mechanism and numerical verification Nonlinearity30 329 · Zbl 1359.37121 · doi:10.1088/1361-6544/30/1/329
[6] Chazy J 1922 Sur l’allure du mouvement dans le problème des trois corps quand le temps croît indéfiniment Ann. Sci. École Norm. Sup.39 29-130 · JFM 48.1074.04 · doi:10.24033/asens.739
[7] Chenciner A and Montgomery R 2000 A remarkable periodic solution of the three-body problem in the case of equal masses Ann. Math.152 881-901 · Zbl 0987.70009 · doi:10.2307/2661357
[8] Cheng C-Q and Yan J 2004 Existence of diffusion orbits in a priori unstable Hamiltonian systems J. Differ. Geom.67 457-517 · Zbl 1098.37055 · doi:10.4310/jdg/1102091356
[9] Cheng C-Q and Yan J 2009 Arnold diffusion in Hamiltonian systems: a priori unstable case J. Differ. Geom.82 229-77 · Zbl 1179.37081 · doi:10.4310/jdg/1246888485
[10] Cheng C-Q 2017 Dynamics around the double resonance Cambridge J. Math.2 153-228 · Zbl 1378.37103 · doi:10.4310/CJM.2017.v5.n2.a1
[11] Cheng C-Q 2019 The genericity of Arnold diffusion in nearly integrable Hamiltonian systems. Asian J. Math.3 401-38 · Zbl 1417.37211 · doi:10.4310/AJM.2019.v23.n3.a3
[12] Delshams A, De la Llave R and Seara T M 2000 A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flows of Commun. Math. Phys.209 353-92 T2 · Zbl 0952.70015 · doi:10.1007/pl00020961
[13] Delshams A, De la Llave R and M-Seara T 2006 A geometric mechanism for diffusion in hamiltonian systems overcoming the large gap problem: heuristics and rigorous verification on a model Mem. Am. Math. Soc.179 844 · Zbl 1090.37044 · doi:10.1090/memo/0844
[14] Delshams A, De la Llave R and Seara T M 2008 Geometric properties of the scattering map of a normally hyperbolic invariant manifold Adv. Math.217 1096-153 · Zbl 1131.37032 · doi:10.1016/j.aim.2007.08.014
[15] Delshams A, Gidea M and González P 2012 Transition map and shadowing lemma for normally hyperbolic invariant manifolds Discrete Contin. Dyn. Syst.33 1089-112 · Zbl 1276.37043 · doi:10.3934/dcds.2013.33.1089
[16] Delshams A, Gidea M and González P 2016 Arnold’s mechanism of diffusion in the spatial circular restricted three-body problem: a semi-analytical argument Physica D 334 29-48 · Zbl 1415.70019 · doi:10.1016/j.physd.2016.06.005
[17] Delshams A, Kaloshin V, De la Rosa A and M-Seara T 2015 Global instability in the elliptic restricted three body problem Commun. Math. Phys.366 1173-228 · Zbl 1446.70024 · doi:10.1007/s00220-018-3248-z
[18] Fejoz J, Guardia M, Kaloshin V and González P 2011 Kirkwood gaps and diffusion along mean motion resonances in the restricted planar three-body problem 18
[19] Gidea M and Marco J-P 2017 Diffusion along chains of normally hyperbolic cylinders (arXiv:1708.08314)
[20] Gorodetski A and Kaloshin V 2012 Hausdorff dimension of oscillatory motions for restricted three body problems http://terpconnect.umd.edu/ vkaloshi
[21] Guardia M, Kaloshin V and Zhang J 2019 Asymptotic density of collision orbits in the restricted circular planar 3 body problem Arch. Ration. Mech. Anal.233 799-836 · Zbl 1471.70008 · doi:10.1007/s00205-019-01368-7
[22] Guardia M, Martín P and M-Seara T 2015 Oscillatory motions for the restricted planar circular three body problem Invent. Math.203 1-76 · Zbl 1398.70030 · doi:10.1007/s00222-015-0591-y
[23] Guardia M, Martin P, Sabbagh L and M-Seara T 2015 Oscillatory orbits in the restricted elliptic planar three body problem Discrete Contin. Dyn. Syst.37 229-56 · Zbl 1404.70029 · doi:10.3934/dcds.2017009
[24] Hadjidemetriou J D 1975 The continuation of periodic orbits from the restricted to the general three-body problem Celest. Mech.12 155-74 · Zbl 0319.70009 · doi:10.1007/bf01230209
[25] Herman M 1983 Sur les courbes invariantes par les difféomorphismes de l’anneau Astérisque vol 103 (Paris: Société Mathématique de France) · Zbl 0532.58011
[26] Kaloshin V and Zhang K 2012 A strong form of Arnold diffusion for two and a half degrees of freedom https://math.umd.edu/ vkaloshi/papers/announce-three-and-half.pdf
[27] Llibre J and Sim C 1980 Oscillatory solutions in the planar restricted three-body problem Math. Ann.248 153-84 · Zbl 0505.70010 · doi:10.1007/bf01421955
[28] Llibre J and Simó C 1980 Some homoclinic phenomena in the three-body problem J. Differ. Equ.37 444-65 · Zbl 0445.70005 · doi:10.1016/0022-0396(80)90109-6
[29] Meyer K and Offin D 2017 Introduction to Hamiltonian Dynamical Systems and the N-Body Problem 3rd (Berlin: Springer) · Zbl 1372.70002 · doi:10.1007/978-3-319-53691-0
[30] Moeckel R 1984 Heteroclinic phenomena in the isosceles three-body problem SIAM J. Math. Anal.15 857-76 · Zbl 0593.70009 · doi:10.1137/0515065
[31] Moeckel R 1996 Transition tori in the five-body problem J. Differ. Equ.129 290-314 · Zbl 0862.70007 · doi:10.1006/jdeq.1996.0119
[32] Moser J 1973 Stable and Random Motions in Dynamical Systems (Princeton, NJ: Princeton University Press) · Zbl 0271.70009
[33] Siegel C 1956 Vorlesungen über himmelsmechanik (Berlin: Springer) pp 18-178 · Zbl 0070.45403 · doi:10.1007/978-3-642-94671-4
[34] Sitnikov K 1960 The existence of oscillatory motions in the three-body problem Sov. Phys. - Dokl.5 647-50 · Zbl 0108.18603
[35] Treschev D 2004 Evolution of slow variables ina prioriunstable Hamiltonian systems Nonlinearity17 1803-41 · Zbl 1075.37019 · doi:10.1088/0951-7715/17/5/014
[36] Xia Z 1992 Melnikov method and transversal homoclinic points in the restricted three-body problem J. Differ. Equ.96 170-84 · Zbl 0741.70007 · doi:10.1016/0022-0396(92)90149-h
[37] Xia Z 1993 Arnold diffusion in the elliptic restricted three-body problem J. Dyn. Diff. Equ.5 219-40 · Zbl 0777.34034 · doi:10.1007/bf01053161
[38] Xue J 2014 Arnold diffusion in a restricted planar four-body problem Nonlinearity27 2887 · Zbl 1309.37054 · doi:10.1088/0951-7715/27/12/2887
[39] Zhang J and Cheng C-Q 2013 Asymptotic trajectories of KAM torus (arXiv:1312.2102)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.