×

On the mean first arrival time of Brownian particles on Riemannian manifolds. (English. French summary) Zbl 1473.58021

The paper under review develops an approach to computing an asymptotic expansion of mean first arrival time for Brownian particles on 3-dimensional compact Riemannian manifolds with boundary. This approach is based on geometric microlocal techniques. The present results could be regarde as a 3-dimensional version of earlier results on planar domains obtained by H. Ammari et al. [ibid. (9) 97, No. 1, 66–84 (2012; Zbl 1252.35116)].

MSC:

58J65 Diffusion processes and stochastic analysis on manifolds
60J65 Brownian motion
92C37 Cell biology
53C65 Integral geometry

Citations:

Zbl 1252.35116

References:

[1] Ammari, H.; Kalimeris, K.; Kang, H.; Lee, H., Layer potential techniques for the narrow escape problem, J. Math. Pures Appl. (9), 97, 1, 66-84 (2012) · Zbl 1252.35116
[2] Chen, X.; Friedman, A., Asymptotic analysis for the narrow escape problem, SIAM J. Math. Anal., 43, 6, 2542-2563 (2011) · Zbl 1252.35030
[3] Cheviakov, A. F.; Ward, M. J.; Straube, R., An asymptotic analysis of the mean first passage time for narrow escape problems: Part II: The sphere, Multiscale Model. Simul., 8, 3, 836-870 (2010) · Zbl 1204.35030
[4] Friedlander, F. G., Introduction to the Theory of Distributions (1982), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0499.46020
[5] Gomez, D.; Cheviakov, A. F., Asymptotic analysis of narrow escape problems in nonspherical three-dimensional domains, Phys. Rev. E, 91, Article 012137 pp. (Jan. 2015)
[6] Grigor’yan, A.; Saloff-Coste, L., Hitting probabilities for Brownian motion on Riemannian manifolds, J. Math. Pures Appl. (9), 81, 2, 115-142 (2002) · Zbl 1042.58022
[7] Hiptmair, R.; Jerez-Hanckes, C.; Urzúa-Torres, C., Closed-form inverses of the weakly singular and hypersingular operators on disks, Integral Equ. Oper. Theory, 90, 1, 14 (2018), Art. 4 · Zbl 1390.45026
[8] Holcman, D.; Schuss, Z., Escape through a small opening: receptor trafficking in a synaptic membrane, J. Stat. Phys., 117, 5-6, 975-1014 (2004) · Zbl 1087.82018
[9] Holcman, D.; Schuss, Z., Stochastic Narrow Escape in Molecular and Cellular Biology, Analysis and Applications (2015), Springer: Springer New York · Zbl 1321.92008
[10] Ilmavirta, J.; Paternain, G. P., Functions of constant geodesic x-ray transform, Inverse Probl., 35, 6, Article 065002 pp. (2019), 11 · Zbl 1428.35625
[11] Impera, D.; Pigola, S.; Setti, A. G., Potential theory for manifolds with boundary and applications to controlled mean curvature graphs, J. Reine Angew. Math., 733, 121-159 (2017) · Zbl 1379.53082
[12] Jost, J., Partial Differential Equations, Graduate Texts in Mathematics, vol. 214 (2013), Springer: Springer New York · Zbl 1259.35001
[13] Kato, T., Perturbation Theory for Linear Operators, Classics in Mathematics (1995), Springer-Verlag: Springer-Verlag Berlin, Reprint of the 1980 edition · Zbl 0836.47009
[14] Lee, J. M., Introduction to Riemannian manifolds, Graduate Texts in Mathematics, vol. 176 (2018), Springer: Springer Cham, Second edition of [MR1468735] · Zbl 1409.53001
[15] Lee, J. M.; Uhlmann, G., Determining anisotropic real-analytic conductivities by boundary measurements, Commun. Pure Appl. Math., 42, 8, 1097-1112 (1989) · Zbl 0702.35036
[16] Martin, P. A., Exact solution of some integral equations over a circular disc, J. Integral Equ. Appl., 18, 1, 39-58 (2006) · Zbl 1138.45003
[17] McIntosh, A., Operators which have an \(H_\infty\) functional calculus, (Miniconference on Operator Theory and Partial Differential Equations. Miniconference on Operator Theory and Partial Differential Equations, North Ryde, 1986. Miniconference on Operator Theory and Partial Differential Equations. Miniconference on Operator Theory and Partial Differential Equations, North Ryde, 1986, Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 14 (1986), Austral. Nat. Univ.: Austral. Nat. Univ. Canberra), 210-231 · Zbl 0634.47016
[18] Monard, F.; Nickl, R.; Paternain, G. P., Efficient nonparametric Bayesian inference for X-ray transforms, Ann. Stat., 47, 2, 1113-1147 (2019) · Zbl 1417.62060
[19] Nursultanov, M.; Rosén, A., Evolution of time-harmonic electromagnetic and acoustic waves along waveguides, Integral Equ. Oper. Theory, 90, 5, 32 (2018), Paper No. 53 · Zbl 06965950
[20] Pestov, L.; Uhlmann, G., On characterization of the range and inversion formulas for the geodesic X-ray transform, Int. Math. Res. Not., 80, 4331-4347 (2004) · Zbl 1075.44003
[21] Pestov, L.; Uhlmann, G., Two dimensional compact simple Riemannian manifolds are boundary distance rigid, Ann. Math. (2), 161, 2, 1093-1110 (2005) · Zbl 1076.53044
[22] Pillay, S.; Ward, M. J.; Peirce, A.; Kolokolnikov, T., An asymptotic analysis of the mean first passage time for narrow escape problems: Part I: Two-dimensional domains, Multiscale Model. Simul., 8, 3, 803-835 (2010) · Zbl 1203.35023
[23] Schuss, Z., Theory and Applications of Stochastic Differential Equations, Wiley Series in Probability and Statistics (1980), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York · Zbl 0439.60002
[24] Schuss, Z.; Singer, A.; Holcman, D., Narrow escape, part i, J. Stat. Phys., 122, 41, 437-463 (2006) · Zbl 1149.82335
[25] Schuss, Z.; Singer, A.; Holcman, D., The narrow escape problem for diffusion in cellular microdomains, Proc. Natl. Acad. Sci. USA, 104, 41, 16098-16103 (2007)
[26] Sharafutdinov, V. A., Integral Geometry of Tensor Fields, Inverse and Ill-Posed Problems Series (1994), VSP: VSP Utrecht · Zbl 0883.53004
[27] Singer, A.; Schuss, Z.; Holcman, D., Narrow escape, part II: the circular disk, J. Stat. Phys., 122, 3, 465-489 (2006) · Zbl 1149.82333
[28] Singer, A.; Schuss, Z.; Holcman, D., Narrow escape and leakage of Brownian particles, Phys. Rev. E, 78, 5, Article 051111 pp. (2008)
[29] Taylor, M. E., Pseudodifferential Operators, Princeton Mathematical Series, vol. 34 (1981), Princeton University Press · Zbl 0453.47026
[30] Taylor, M. E., Partial Differential Equations I: Basic Theory, Applied Mathematical Sciences., vol. 115 (2011), Springer: Springer New York · Zbl 1206.35002
[31] Taylor, M. E., Partial Differential Equations II. Qualitative Studies of Linear Equations, Applied Mathematical Sciences, vol. 116 (2011), Springer: Springer New York · Zbl 1206.35003
[32] L. Thibault, Sur la rigidité des variétés Riemanniennes, PhD thesis, Laboratoire de mathématiques d’Orsay.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.