×

Asymptotics of conditional empirical processes. (English) Zbl 0655.62040

The authors investigate asymptotic approximations of estimators of the conditional empirical process of Y given \(X=x\), leading to a functional law of the iterated logarithm. Two estimators are considered, a kernel- type estimator and a nearest-neighbor type estimator. The main results show that the weak behaviour of the conditional empirical processes at a given x is essentially the same as that of the empirical process, although the rates now depend on the bandwidth.
Reviewer: Z.Rychlik

MSC:

62G05 Nonparametric estimation
60F17 Functional limit theorems; invariance principles
60F15 Strong limit theorems
Full Text: DOI

References:

[1] Borisov, I. S., Approximation of empirical fields, constructed with respect to vector observations with dependent components, Sibirsk. Mat. Zh., 23, 31-41 (1982) · Zbl 0524.60057
[2] Cheng, P. E., Strong consistency of nearest neighbor regression function estimates, J. Multivariate Anal., 15, 63-72 (1984) · Zbl 0542.62031
[3] Cheng, K. F.; Cheng, P. E., Robust nonparametric estimation of a regression function, Sankhy \(a\) Ser. A, 49 (1987) · Zbl 0653.62029
[4] Collomb, G., Estimation non-parametrique de la regression: revue bibliographique, Internat. Statist. Rev., 49, 75-93 (1981) · Zbl 0471.62039
[5] Csörgő, M.; Révész, P., (Strong Approximations in Probability and Statistics (1981), Akad. Kiadó: Akad. Kiadó Budapest), and Academic Press, New York · Zbl 0539.60029
[6] Csörgő, M.; Horváth, L., A note on strong approximation of multivariate empirical processes, Stochastic Process Appl. (1988), (to appear) · Zbl 0645.60030
[7] Csörgő, M.; Révész, P., A strong approximation of the multivariate empirical process, Studia Sci. Math. Hungar., 10, 427-434 (1975) · Zbl 0396.60034
[8] de Acosta, A., Invariance principles in probability for triangular arrays of B-valued random vectors and some applications, Ann. Probab., 10, 346-373 (1982) · Zbl 0499.60009
[9] Dehling, H.; Denker, M.; Philipp, W., The almost sure invariance principle for the empirical process of \(U\)-statistic structure, Ann. Inst. H. Poincaré Probab. Statist., 23, 121-134 (1987) · Zbl 0619.60036
[10] Dvoretzky, A.; Kiefer, J.; Wolfowitz, J., Asymptotic minimal character of the sample distribution function and of the multinomial estimator, Ann. Math. Statist., 27, 642-669 (1956) · Zbl 0073.14603
[11] Härdle, W., Robust regression function estimation, J. Multivariate Anal., 14, 169-180 (1984) · Zbl 0538.62029
[12] Johnston, G. J., Probabilities of maximal deviations for nonparametric regression function estimates, J. Multivariate Anal., 12, 402-414 (1982) · Zbl 0497.62038
[13] Kiefer, J., On large deviations of the empiric distribution function of vector chance variables and a law of the iterated logarithm, Pacific J. Math., 11, 649-660 (1961) · Zbl 0119.34904
[14] Komlós, J.; Major, P.; Tusnády, G., An approximation of partial sums of independent RV’s and the sample DF, I, Z. Wahrsch. Verw. Gebiete, 32, 111-131 (1975) · Zbl 0308.60029
[15] Konakov, V. D.; Piterbarg, V. I., On the convergence rate of maximal deviation distribution for kernel regression estimates, J. Multivariate Anal., 15, 279-294 (1984) · Zbl 0554.62034
[16] Lai, T. L., Reproducing kernel Hilbert spaces and the law of the iterated logarithm for Gaussian processes, Z. Wahrsch. Verw. Gebiete, 29, 7-19 (1974) · Zbl 0272.60024
[17] Liero, H., On the maximal deviation of the kernel regression function estimate, Math. Operationsforsch. Statist. Ser. Statist., 13, 171-182 (1982) · Zbl 0494.62044
[18] Mack, Y. P.; Silverman, B. W., Weak and strong uniform consistency of kernel regression estimates, Z. Wahrsch. Verw. Gebiete, 61, 405-415 (1982) · Zbl 0495.62046
[19] Mangano, G.-C, Sequential compactness of certain sequences of Guassian random variables with values in C[0, 1], Ann. Probab., 4, 901-913 (1976) · Zbl 0364.60025
[20] Nadaraya, E. A., On estimating regression, Theory Probab. Appl., 9, 141-142 (1964) · Zbl 0136.40902
[21] Philipp, W.; Pinzur, L., Almost sure approximation theorems for the multivariate empirical process, Z. Wahrsch. Verw. Gebiete, 54, 1-13 (1980) · Zbl 0424.60030
[22] Révész, P., On the nonparametric estimation of the regression function, Problems Control Inform. Theory, 8, 297-302 (1979) · Zbl 0417.62050
[23] Serfling, R. J., (Approximation Theorems of Mathematical Statistics (1980), Wiley: Wiley New York) · Zbl 0538.62002
[24] Stone, C., Optimal rates of convergence for nonparametric estimators, Ann. Statist., 8, 1348-1360 (1980) · Zbl 0451.62033
[25] Stone, C., Consistent nonparametric regression, Ann. Statist, 5, 595-620 (1977) · Zbl 0366.62051
[26] Stute, W., Conditional empirical processes, Ann. Statist., 14, 638-647 (1986) · Zbl 0594.62038
[27] Stute, W., (On Almost Sure Convergence of Conditional Empirical Distribution Functions (1986), Mathematisches Institut der Justus-Liebig-Universität), Preprint · Zbl 0593.60043
[28] Stute, W., Asymptotic normality of nearest neighbor regression function estimates, Ann. Statist., 12, 917-926 (1984) · Zbl 0539.62026
[29] Watson, G. S., Smooth regression analysis, Sankhy \(a\) Ser. A, 26, 359-372 (1964) · Zbl 0137.13002
[30] Wichura, M., Some Strassen-type laws of the iterated logarithm for multiparameter stochastic processes with independent increments, Ann. Probab, 1, 272-296 (1973) · Zbl 0288.60030
[31] Yang, S.-S, Linear functions of concomitants of order statistics with application to non-parametric estimation of a regression function, J. Amer. Statist. Assoc., 76, 658-662 (1981) · Zbl 0475.62031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.