×

Lava spreading during volcanic eruptions on the condition of partial slip along the underlying surface. (English. Russian original) Zbl 1325.76061

Fluid Dyn. 50, No. 2, 203-214 (2015); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2015, No. 2, 27-40 (2015).
Summary: In the axisymmetric approximation the problem of spreading lava as an incompressible constant-viscosity liquid over a flat horizontal surface is solved. Instead of the classical no-slip condition, a condition of partial lava slip along the underlying surface is used: at the surface the velocity is assumed to be a power function of friction. In the thin-layer approximation, for the problem of slow liquid spreading an asymptotic self-similar solution is constructed on the assumptions of partial slip along the underlying surface and a power time dependence of the flow rate. The same problem is solved in the complete formulation numerically. It is shown that the numerical and asymptotic solutions are in good agreement. It is established that with account for the slip effect the lava propagation velocity may be substantially higher than for the no-slip condition.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics
86A60 Geological problems
Full Text: DOI

References:

[1] R.W. Griffiths, “The Dynamics of Lava Flows,” Annu. Rev. Fluid Mech. 32, 477-518 (2000). · Zbl 0992.76007 · doi:10.1146/annurev.fluid.32.1.477
[2] N.V. Koronovskii, General Geology: Textbook (KDU, Moscow, 2006) [in Russian].
[3] H.E. Huppert, J.B. Shepherd, H. Sigurdsson, and R.S.J. Sparks, “On Lava Dome Growth, with Application to the 1979 Lava Extrusion of the Soufriere of St._Vincent,” J. Volc. Geotherm. Res. 14, 199-222 (1982). · doi:10.1016/0377-0273(82)90062-2
[4] N.J. Balmforth, A.S. Burbidge, R.V. Craster, et al., “Visco-Plastic Models of Isothermal Lava Domes,” J. Fluid Mech. 403, 37-65 (2000). · Zbl 0957.76003 · doi:10.1017/S0022112099006916
[5] R.W. Griffiths and J.H. Fink, “Effects of Surface Cooling on the Spreading of Lava Flows and Domes,” J. Fluid Mech. 252, 667-702 (1993). · doi:10.1017/S0022112093003933
[6] W. Zhu, D.K. Smith, and L.G.J. Montesi, “Effects of Regional Slope on Viscous Flows: a Preliminary Study of Lava Terrace Emplacement at Submarine Volcanic Rift Zones,” J. Volcan. Geotherm. Res. 119, 145-159 (2002). · doi:10.1016/S0377-0273(02)00310-4
[7] N.J. Balmforth, R.V. Craster, and R. Sassi, “Dynamics of Cooling Viscoplastic Domes,” J. Fluid Mech. 499, 149-182 (2004). · Zbl 1163.76316 · doi:10.1017/S0022112003006840
[8] M. Dragoni, I. Borsari, and A. Tallarico, “A Model for the Shape of Lava Flow Fronts,” J. Geophys. Res. 110, B09203 (2005).
[9] A.A. Osiptsov, “A Self-Similar Solution to the Problem of Lava Dome Growth on an Arbitrary Conical Surface,” Fluid Dynamics 39(1), 47-60 (2004). · Zbl 1178.76074 · doi:10.1023/B:FLUI.0000024811.33307.f2
[10] A.A. Osiptsov, “Non-Isothermal Lava Flows over a Conical Surface,” Fluid Dynamics 40(2), 221-232 (2005). · Zbl 1329.76122 · doi:10.1007/s10697-005-0062-z
[11] A.A. Osiptsov, “Three-Dimensional Isothermal Lava Flows over a Non-Axisymmetric Conical Surface,” Fluid Dynamics 41(2), 198-210 (2006). · Zbl 1198.76022 · doi:10.1007/s10697-006-0034-y
[12] C. Michaut, D. Baratoux, and C. Thorey, “Magmatic Intrusions and Deglaciation at Mid-Latitude in the Northern Plains of Mars,” Icarus 225(1), 602-613 (2013). · doi:10.1016/j.icarus.2013.04.015
[13] A. Costa, G. Wadge, and O. Melnik, “Cyclic Extrusion of a Lava Dome Based on a Stick-Slip Mechanism,” Earth Planet. Sci. Lett. 337-338, 39-46 (2012). · doi:10.1016/j.epsl.2012.05.011
[14] H.E. Huppert, “The Propagation of Two-Dimensional and Axisymmetric Viscous Gravity Currents over a Rigid Horizontal Surface,” J. Fluid Mech. 21, 43-58 (1982). · doi:10.1017/S0022112082001797
[15] S.S. Grigoryan and Ya.V. Babkin, “Self-Similar Solutions of the Equations for Shallow-Water Flows in Large Areas,” Dokl. Akad. Nauk 355(5), 626-627 (1997).
[16] T. Sochi, “Slip at Fluid-Solid Interface,” Polymer Rev. 51(4), 309-340 (2011). · doi:10.1080/15583724.2011.615961
[17] L.M. Hocking and A.D. Rivers, “The Spreading of a Drop by Capillary Action,” J. Fluid Mech. 121, 425-442 (1982). · Zbl 0492.76101 · doi:10.1017/S0022112082001979
[18] L.M. Hocking, “Rival Contact-Angle Models and the Spreading of Drops,” J. Fluid Mech. 239, 671-681 (1992). · Zbl 0754.76022 · doi:10.1017/S0022112092004579
[19] A. Oron, S.H. Davis, and S.G. Bankoff, “Long-Scale Evolution of Thin Liquid Films,” Rev. Modern Phys. 69(3), 931-980 (1997). · doi:10.1103/RevModPhys.69.931
[20] L.M. Hocking and S.H. Davis, “Inertial Effects in Time-Dependent Motion of Thin Films and Drops,” J. Fluid Mech. 467, 1-17 (2002). · Zbl 1090.76523 · doi:10.1017/S0022112002008637
[21] S.N. Reznik and A.L. Yarin, “Spreading of an Axisymmetric Viscous Drop Due to Gravity and Capillarity on a dry Horizontal Wall,” Int. J. Multiphase Flow 28, 1437-1457 (2002). · Zbl 1137.76727 · doi:10.1016/S0301-9322(02)00043-5
[22] E.F. Khairetdinov, “Problem of a Rapidly Moving Spatial Landslide,” Dokl. Akad. Nauk 406(6), 760-764 (2006).
[23] C.A. Perazzo and J. Gratton, “Asymptotic Regimes of Ridge and Rift Formation in a Thin Viscous Sheet Model, Phys. Fluids <Emphasis Type=”Bold”>20(4), 043103 (2008). · Zbl 1182.76594 · doi:10.1063/1.2908356
[24] Ageev, AI; Chernii, GG (ed.); Samsonov, VA (ed.), Spreading of a Liquid Film over a Superhydrophobic Surface, 90-95 (2013), Moscow
[25] A.I. Ageev and A.N. Osiptsov, “Self-Similar Regimes of Liquid-Layer Spreading along a Superhydrophobic Surface,” Fluid Dynamics 49(3), 330-342 (2014). · Zbl 1294.76052 · doi:10.1134/S0015462814030041
[26] A. Diez, L. Kondic, and A. Bertozzi, “Global Models for Moving Contact Lines,” Phys. Rev. E. 63(1), 011208 (2000). · doi:10.1103/PhysRevE.63.011208
[27] V. Maderich, I. Brovchenko, and K.T. Jung, “Oil Spreading in Instantaneous and Continuous Spills on Rotating Earth,” Environ. Fluid Mech. 12(4), 361-378 (2012). · doi:10.1007/s10652-012-9239-2
[28] S. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere Publish. Corporat., New York, 1980). · Zbl 0521.76003
[29] J.H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics (Springer-Verlag, Berlin, Heidelberg, 2002). · Zbl 0998.76001 · doi:10.1007/978-3-642-56026-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.