×

Permutation groups and binary self-orthogonal codes. (English) Zbl 1172.94012

Summary: Let \(G\) be a permutation group on an \(n\)-element set \(\Omega\). We study the binary code \(C(G,\Omega )\) defined as the dual code of the code spanned by the sets of fixed points of involutions of \(G\). We show that any \(G\)-invariant self-orthogonal code of length \(n\) is contained in \(C(G,\Omega )\). Many self-orthogonal codes related to sporadic simple groups, including the extended Golay code, are obtained as \(C(G,\Omega )\). Some new self-dual codes invariant under sporadic almost simple groups are constructed.

MSC:

94B25 Combinatorial codes
20B05 General theory for finite permutation groups

Software:

Magma
Full Text: DOI

References:

[1] Bosma, W.; Cannon, J., Handbook of Magma Functions, Department of Mathematics, University of Sydney, available online at
[2] Calderbank, A. R.; Wales, D. B., A global code invariant under the Higman-Sims group, J. Algebra, 75, 233-260 (1982) · Zbl 0492.20011
[3] N. Chigira, M. Harada, M. Kitazume, Some self-dual codes invariant under the Hall-Janko group, preprint; N. Chigira, M. Harada, M. Kitazume, Some self-dual codes invariant under the Hall-Janko group, preprint · Zbl 1214.94073
[4] Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; Wilson, R. A., Atlas of Finite Groups (1985), Clarendon Press: Clarendon Press Oxford · Zbl 0568.20001
[5] Haemers, W. H.; Parker, C.; Pless, V.; Tonchev, V., A design and a code invariant under the simple group \(Co_3\), J. Combin. Theory Ser. A, 62, 225-233 (1993) · Zbl 0769.94017
[6] Higman, G., On the simple group of D.G. Higman and C.C. Sims, Illinois J. Math., 13, 74-80 (1969) · Zbl 0165.04001
[7] Key, J. D.; Moori, J., Codes, designs and graphs from the Janko groups \(J_1\) and \(J_2\), J. Combin. Math. Combin. Comput., 40, 143-159 (2002) · Zbl 0999.05010
[8] MacWilliams, F. J.; Sloane, N. J.A., The Theory of Error-Correcting Codes (1977), North-Holland: North-Holland Amsterdam · Zbl 0369.94008
[9] MacWilliams, F. J.; Sloane, N. J.A.; Thompson, J. G., Good self dual codes exist, Discrete Math., 3, 153-162 (1972) · Zbl 0248.94011
[10] Moori, J.; Rodrigues, B. G., A self-orthogonal doubly even code invariant under \(M^c L : 2\), J. Combin. Theory Ser. A, 110, 53-69 (2005) · Zbl 1076.05087
[11] Roney-Dougal, C. M., The primitive permutation groups of degree less than 2500, J. Algebra, 252, 154-183 (2005) · Zbl 1107.20001
[12] Roney-Dougal, C. M.; Unger, W. R., The affine primitive permutation groups of degree less than 1000, J. Symbolic Comput., 35, 421-439 (2003) · Zbl 1047.20005
[13] Tonchev, V. D., A characterization of designs related to the Witt system \(S(5, 8, 24)\), Math. Z., 191, 225-230 (1986) · Zbl 0563.05010
[14] Tonchev, V. D., Binary codes derived from the Hoffman-Singleton and Higman-Sims graphs, IEEE Trans. Inform. Theory, 43, 1021-1025 (1997) · Zbl 0926.94030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.