×

Gauss-Jacobi quadrature rules for n-simplex with applications to finite element methods. (English) Zbl 0504.65012

MSC:

65D32 Numerical quadrature and cubature formulas
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
41A55 Approximate quadratures
41A63 Multidimensional problems
Full Text: DOI

References:

[1] Argyris, J. H.; Buch, K. E.; Fried, I.; Mareczek, G.; Scharpf, D. W., Some new elements for matrix displacement methods, (Proc. 2nd Conf. Matrix Methods in Structural Mechanics, Air Force Inst. Tech.. Proc. 2nd Conf. Matrix Methods in Structural Mechanics, Air Force Inst. Tech., Wright Patterson Air Force Base, OH (1968))
[2] Argyris, J. H.; Fried, I., The LUMINA element for the matrix displacement method, Aero. J., 72, 514-517 (1968)
[3] Zienkiewicz, O. C., The Finite Element Method (1977), McGraw-Hill: McGraw-Hill London · Zbl 0435.73072
[4] Okabe, M.; Yamada, Y.; Nishiguchi, I., Reconsideration of rectangular Lagrange families with hierarchyranking bases, Comput. Meths. Appl. Mech. Engrg., 23, 369-390 (1980) · Zbl 0442.73071
[5] Okabe, M., Generalized Lagrange family for the cube with special reference to infinite-domain interpolations, Comput. Meths. Appl. Mech. Engrg., 38, 153-168 (1983) · Zbl 0499.41003
[6] Argyris, J. H., Triangular elements with linearly varying strain for the matrix displacement method, J. Roy. Aero. Soc., 69, 711-713 (1965)
[7] Argyris, J. H.; Fried, I.; Scharpf, D. W., The TET20 and TEA8 elements for the matrix displacement method, Aero. J., 72, 618-625 (1968)
[8] Okabe, M.; Kikuchi, N., Some general Lagrange interpolations over simplex finite elements with reference to derivative singularities, Comput. Meths. Appl. Mech. Engrg., 28, 1-25 (1981) · Zbl 0466.73088
[9] Strang, G.; Fix, G. J., An Analysis of the Finite Element Method (1973), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0278.65116
[10] Radau, J. de Math., 283 (1880)
[11] Cowper, G. R., Gaussian quadrature formulas for triangles, Internat. J. Numer. Meths. Engrg., 7, 405-408 (1973) · Zbl 0265.65013
[12] Moan, T., Experiences with orthogonal polynomials and “best” numerical integration formulas on a triangle; with particular reference to finite element applications, Z. Angew. Math. Mech., 54, 501-508 (1974) · Zbl 0284.65015
[13] Magnus, W.; Oberhettinger, F., Formeln und Stätze für die Speziellen Funktionen der Mathematischen Physik (1948), Springer-Verlag: Springer-Verlag Berlin · Zbl 0039.29701
[14] Okabe, M., Fundamental theory of the semi-radial singularity mapping with applications to fracture mechanics, Comput. Meths. Appl. Mech. Engrg., 26, 53-73 (1981) · Zbl 0463.73091
[15] Okabe, M., Quadrilateral element with semi-radial singularity mapping, Internat. J. Numer. Meths. Engrg., 17, 1045-1067 (1981) · Zbl 0456.73056
[16] Okabe, M.; Kikuchi, N., Semi-radial singularity mapping theory for line singularities in fracture mechanics, Comput. Meths. Appl. Mech. Engrg., 36, 257-276 (1983) · Zbl 0489.73087
[17] Blackburn, W. S., Calculation of stress intensity factors, (Whiteman, J. R., The Mathematics of Finite Elements and Applications (1973), Academic Press: Academic Press London), 327-336 · Zbl 0278.73048
[18] Akin, J. E., The generation of elements with singularities, Internat. J. Numer. Meths. Engrg., 10, 1249-1259 (1976) · Zbl 0341.65078
[19] Akin, J. E., Elements for problems with line singularities, (Whiteman, J. R., The Mathematics of Finite Elements and Applications, Vol. 3 (1978), Academic Press: Academic Press London), 65-75 · Zbl 0443.73051
[20] Stern, M., Families of consistent conforming elements with singular derivative fields, Internat. J. Numer. Meths. Engrg., 14, 409-421 (1979) · Zbl 0408.73071
[21] Hughes, T. J.R.; Akin, J. E., Techniques for developing ‘special’ finite element shape functions with particular reference to singularities, Internat. J. Numer. Meths. Engrg., 15, 733-751 (1980) · Zbl 0428.73074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.