×

Distribution-free approximate methods for constructing confidence intervals for quantiles. (English) Zbl 07776779

Summary: Quantile estimation is important for a wide range of applications. While point estimates based on one or two order statistics are common, constructing confidence intervals around them, however, is a more difficult problem. This paper has two goals. First, it surveys the numerous distribution-free methods for constructing approximate confidence intervals for quantiles. These techniques can be divided roughly into four categories: using a pivotal quantity, resampling, interpolation, and empirical likelihood methods. Second, a method based on the pivotal quantity that has received limited attention in the past is extended. Comprehensive simulation studies are used to compare performance across methods. The proposed method is simple and performs similarly to linear interpolation methods and a smoothed empirical likelihood method. While the proposed method has slightly wider interval widths, it can be calculated for more extreme quantiles even when there are few observations.

MSC:

62Gxx Nonparametric inference
62Fxx Parametric inference
62-XX Statistics

Software:

StInt; bootstrap
Full Text: DOI

References:

[1] Adimari, G. (1998). An empirical likelihood statistic for quantiles. J. of Statist. Comput. Simul., 60, 85-95. · Zbl 0887.62033
[2] Asmussen, S. & Glynn, P.W. (2007). Stochastic Simulation: Algorithms and Analysis. Springer‐Verlag: New York. · Zbl 1126.65001
[3] Avramidis, A.N. & Wilson, J.R (1998). Correlation‐induction techniques for estimating quantiles in simulation experiments. Oper. Res., 46, 574-591. · Zbl 1009.62598
[4] Beran, R. (1987). Prepivoting to reduce level error of confidence sets. Biometrika, 74, 457-468. · Zbl 0663.62045
[5] Beran, R. & Hall, P. (1993). Interpolated nonparametric prediction intervals and confidence intervals. J. Roy. Statist. Soc. Ser. B, 55, 643-652. · Zbl 0783.62037
[6] Bloch, D.A. & Gastwirth, J.L. (1968). On a simple estimate of the reciprocal of the density function. Ann. Math. Statist., 39, 1083-1085. · Zbl 0245.62043
[7] Chen, S.X. & Hall, P. (1993). Smoothed empirical likelihood confidence intervals for quantiles. Ann. Statist., 21, 1166-1181. · Zbl 0786.62053
[8] Chu, F. & Nakayama, M.K. (2012). Confidence intervals for quantiles when applying variance‐reduction techniques. ACM Trans. Model. Comput. Simul., 22(10), 25. · Zbl 1386.65015
[9] David, H.A. & Nagaraja, H.N. (2003). Order Statistics, 3. Hoboken: Wiley. · Zbl 1053.62060
[10] De Angelis, D., Hall, P. & Young, G.A. (1993). A note on coverage error of bootstrap confidence intervals for quantiles. Math. Proc. Camb. Phil. Soc., 114, 517-531. · Zbl 0799.62044
[11] De Angelis, D. & Young, G.A. (1992). Smoothing the bootstrap. Int. Statist. Rev., 60, 45-56. · Zbl 0781.62048
[12] Diciccio, T.J. & Romano, J.P. (1988). A review of bootstrap confidence intervals. J. Roy. Statist. Soc. Ser. B, 50, 338-354. · Zbl 0672.62057
[13] Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Ann. Statist., 7, 1-26. · Zbl 0406.62024
[14] Efron, B. (1987). Better bootstrap confidence intervals (with discussion). J. Amer. Statist. Assoc., 82, 171-200. · Zbl 0622.62039
[15] Efron, B. & Tibshirani, R.J. (1993). An Introduction to the Bootstrap. Chapman & Hall: New York. · Zbl 0835.62038
[16] Falk, M. (1989). A note of uniform asymptotic normality of intermediate order statistics. Ann. Inst. Statist. Math., 41, 19-29. · Zbl 0693.62019
[17] Falk, M. & Kaufmann, E. (1991). Coverage probabilities of bootstrap‐confidence intervals for quantiles. Ann. Statist., 19, 485-495. · Zbl 0725.62043
[18] Frey, J. & Zhang, Y. (2017). What do interpolated nonparametric confidence intervals for population quantiles guarantee?Amer. Statist., 71, 305-309. · Zbl 07687917
[19] Galambos, J. (1987). The Asymptotic Theory of Extreme Order Statistics, 2. R.E. Krieger Pub. Co: Malabar, FL. · Zbl 0634.62044
[20] Glasserman, P. (2003). Monte Carlo Methods in Financial Engineering. Springer‐Verlag: New York.
[21] Glasserman, P., Heidelberger, P. & Shahabuddin, P. (2000). Variance reduction techniques for estimating value‐at‐risk. Management Sci., 46, 1349-1364. · Zbl 1232.91348
[22] Gnedenko, B.V. (1943). Sur la distribution limite du terme maximum d’une série aléatoire. Ann. of Math., 44, 423-453. · Zbl 0063.01643
[23] Goh, S.C. (2004). Smoothing choices and distributional approximations for econometric inference. Ph.D. thesis, U.C. Berkeley.
[24] Goldman, M. & Kaplan, D.M. (2017). Fractional order statistic approximation for nonparametric conditional quantile inference. J. Econometrics, 196, 331-346. · Zbl 1403.62045
[25] Guilbaud, O. (1979). Interval estimation of the median of a general distribution. Scand. J. Statist., 6, 29-36. · Zbl 0427.62021
[26] Guilbaud, O.J.M. (2018). Some complementary history and results. Amer. Statist., 72, 300-301. · Zbl 07663951
[27] Hall, P. (1986). On the bootstrap and confidence intervals. Ann. Statist., 14, 1431-1452. · Zbl 0611.62047
[28] Hall, P. & Sheather, S.J. (1988). On the distribution of a Studentized quantile. J. Roy. Statist. Soc. Ser. B, 50, 381-391. · Zbl 0674.62034
[29] Hettmansperger, T.P. & Sheather, S.J. (1986). Confidence intervals based on interpolated order statistics. Statist. Probab. Lett., 4, 75-79. · Zbl 0585.62085
[30] Ho, Y.H.S. & Lee, S.M.S. (2005a). Calibrated interpolated confidence intervals for population quantiles. Biometrika, 92, 234-241. · Zbl 1068.62058
[31] Ho, Y.H.S. & Lee, S.M.S. (2005b). Iterated smoothed bootstrap confidence intervals for population quantiles. Ann. Statist., 33, 437-462. · Zbl 1064.62051
[32] Hutson, A.D. (1999). Calculating nonparametric confidence intervals for quantiles using fractional order statistics. J. Appl. Statist., 26, 343-353. · Zbl 1072.62577
[33] Hyndman, R.J. & Fan, Y. (1996). Sample quantiles in statistical packages. Amer. Statist., 50, 361-365.
[34] Jin, X., Fu, M.C. & Xiong, X. (2003). Probabilistic error bounds for simulation quantile estimators. Management Sci., 49, 230-246. · Zbl 1232.91349
[35] Jones, M.C. (1992). Estimating densities, quantiles, quantile densities, and density quantiles. Ann. Inst. Statist. Math., 44, 721-727. · Zbl 0772.62022
[36] Kaplan, D. (2015). Improved quantile inference via fixed‐smoothing asymptotics and Edgeworth expansion. J. Econometrics, 185, 20-32. · Zbl 1331.62256
[37] Koehler, E., Brown, E. & Haneuse, J.‐P.A. (2009). On the assessment of Monte Carlo error in simulation‐based statistical analyses. Amer. Statist., 63, 155-162. · Zbl 1404.62150
[38] Lahiri, S.N. (2003). Resampling Methods for Dependent Data. Springer‐Verlag: New York. · Zbl 1028.62002
[39] Larocque, D. & Randles, R.H. (2008). Confidence intervals for a discrete population median. Amer. Statist., 62, 32-39.
[40] Martin, M.A. (1990). On using the jackknife to estimate quantile variance. Canad. J. Statist., 18, 149-153. · Zbl 0702.62017
[41] Meeker, W.Q., Hahn, G.J. & Escobar, L.A. (2017). Statistical Intervals: A Guide for Practitioners and Researchers, 2. Hoboken: Wiley. · Zbl 1395.62002
[42] Miller, R.G. (1974). The jackknife: A review. Biometrika, 61, 1-15. · Zbl 0275.62035
[43] Muñoz, D.F. (2010). On the validity of the batch quantile method for Markov chains. Oper. Res. Lett., 38, 223-226. · Zbl 1187.90312
[44] Nagaraja, H.N., Bharath, K. & Zhang, F. (2015). Spacings around an order statistic. Ann. Inst. Statist. Math., 67, 515-540. · Zbl 1440.62163
[45] Nakayama, M.K. (2014). Confidence intervals for quantiles using sectioning when applying variance‐reduction techniques. ACM Trans. Model. Comput. Simul, 24(19). · Zbl 1322.68251
[46] Nyblom, J. (1992). Note on interpolated order statistics. Statist. Probab. Lett., 14, 129-131. · Zbl 0761.62054
[47] Owen, A.B. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika, 75, 237-249. · Zbl 0641.62032
[48] Owen, A.B. (2001). Empirical Likelihood. Chapman & Hall/CRC Monographs on Statistics and Applied Probability: Florida. · Zbl 0989.62019
[49] Parrish, R.S. (1990). Comparison of quantile estimators in normal sampling. Biometrics, 46, 247-257. · Zbl 0715.62076
[50] Peng, L. & Yang, J. (2009). Jackknife method for intermediate quantiles. J. Statist. Plann. Inference, 139, 2373-2381. · Zbl 1160.62042
[51] Reiss, R.‐D. (1989). Approximate Distributions of Order Statistics: With Applications to Nonparametric Statistics. Springer‐Verlag: New York. · Zbl 0682.62009
[52] Rice, J.A. (1995). Mathematical Statistics and Data Analysis, 2. Duxbury Press: Belmont, California. · Zbl 0868.62006
[53] Schmeiser, B. (1982). Batch size effects in the analysis of simulation output. Oper. Res., 30, 556-568. · Zbl 0484.65087
[54] Shao, J. & Wu, C.F.J. (1989). A general theory for jackknife variance estimation. Ann. Statist., 17, 1176-1197. · Zbl 0684.62034
[55] Sheather, S.J. & McKean, J.W. (1987). A comparison of testing and confidence interval methods for the median. Statist. Probab. Lett., 6, 31-36. · Zbl 0626.62047
[56] Siddiqui, M.M. (1960). Distribution of quantiles in samples from a bivariate population. J. Res. Nat. Bur. Standards Sect. B, 64B, 145-150. · Zbl 0096.13402
[57] Stigler, S.M. (1977). Fractional order statistics, with applications. J. Amer. Statist. Assoc., 72, 544-550. · Zbl 0374.62048
[58] S original and from StatLib and by Rob Tibshirani. R port by Friedrich Leisch (2017). Bootstrap: Functions for the book an introduction to the bootstrap. R package version 2017.2. https://CRAN.R-project.org/package=bootstrap.
[59] vonMises, R. (1936). La distribution de la plus grande n valeurs. Rev. Math. Union Interbalkanique, 1, 141-160. · Zbl 0016.12801
[60] Zhou, W. & Jing, B.‐Y. (2003). Adjusted empirical likelihood method for quantiles. Ann. Inst. Statist. Math., 55, 689-703. · Zbl 1047.62041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.