×

A game-theoretic equivalence to the Hahn-Banach theorem. (English) Zbl 0719.90104

Summary: Let \(\Gamma_ X(\upsilon)=<X,A(X),\upsilon >\) be a cooperative von Neumann game with side pagments, where X is a nonempty set of arbitrary cardinality, A(X) the Boolean ring generated from P(X) with the operations \(\Delta\) and \(\cap\) for addition and multiplication, respectively, such that \(S^ 2=S\) for all \(S\in A(X)\), and \(\upsilon\) : A(X)\(\to {\mathbb{R}}_+\) with \(\upsilon (\emptyset)=0\). The Shapley- Bondareva-Schmeidler Theorem, which states that a game of the form \(\Gamma_ X(\upsilon)=<X,A(X),\upsilon >\) is weak if and only if the core of \(\Gamma_ X(\upsilon)\), \(\zeta (\Gamma_ X(\upsilon))\), is normal, may be regarded as the fundamental theorem for weak cooperative games with side-payments. In this paper we use an ultrapower construction on the reals, \({\mathbb{R}}\), to summarize a common mathematical theme employed in various constructions used to establish the Shapley- Bondareva-Schmeidler Theorem in the literature [see F. Delbaen, J. Math. Anal. Appl. 45, 210-233 (1974; Zbl 0337.90084); Y. Kannai, ibid. 27, 227-240 (1969; Zbl 0181.469); D. Schmeidler, ibid. 40, 214-225 (1972; Zbl 0243.90071); “On balanced games with infinitely many players”, Unpubl. Mauscr., The Hebrew Univ. 1967]. This common mathematical theme is that the space L, comprised of finite, real linear combinations of the collection of functions, \(\{\chi_ a: a\in A(X)\}\), possesses a certain extension property that is intimately related to the Hahn-Banach Theorem of functional analysis. A close inspection of the extension property reveals that the Shapley-Bondareva-Schmeidler Theorem is in fact equivalent to the Hahn-Banach Theorem.

MSC:

91A15 Stochastic games, stochastic differential games
46A22 Theorems of Hahn-Banach type; extension and lifting of functionals and operators
Full Text: DOI

References:

[1] Aumann, R. J., Markets with a continuum of traders, Econometrica, 32, 39-52 (1966) · Zbl 0137.39003
[2] Bachman, L.; Narici, R., Functional Analysis (1969), Academic Press: Academic Press New York · Zbl 0141.11502
[3] Banach, S., Operations Lineaires (1932), Hafner Press: Hafner Press New York · JFM 58.0420.01
[4] Bandisch, A.; Seese, D.; Tuschik, H. P.; Weese, M., Decidability and Generalized Quantifiers (1980), Akademie-Verlag: Akademie-Verlag Berlin · Zbl 0442.03011
[5] Brown, D. J.; Robinson, A., Nonstandard exchange economies, Econometrica, 43, 41-55 (1975) · Zbl 0368.90014
[6] Brown, D. K.; Simpson, S. G., Which set existence axioms are needed to prove the separable Hahn-Banach theorems, Ann. Pure and Applied Logic, 31, 123-144 (1986) · Zbl 0615.03044
[7] Dalbaen, F., Convex games and extreme points, J. Math. Analysis and Applications, 45, 210-233 (1974) · Zbl 0337.90084
[8] Dunford, N.; Schwartz, J., Linear Operators (1958), Wiley: Wiley New York · Zbl 0084.10402
[9] Ehrenfeucht, A., An application of games to the completeness problem in formalized theories, Fundamenta Mathematicae, XLIX, 129-141 (1961) · Zbl 0096.24303
[10] Fan, K., On systems of linear inequalities, (Kuhn, H. W.; Tucker, A. W., Annals of Mathematics Study No. 38 (1956), Princeton University Press: Princeton University Press Princeton), 99-156 · Zbl 0072.37602
[11] Fenstad, J. E., The axiom of determinateness, (Proc. 2nd Scandinavian Logic Symposium (1971), North-Holland: North-Holland Amsterdam), 41-61 · Zbl 0222.02076
[12] Fremlin, D. H., Topological Reisz Spaces and Measure Theory (1974), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0273.46035
[13] Friedman, H., On the necessary use of abstract set theory, Adv. Math., 41, 3, 209-280 (1981) · Zbl 0483.03030
[14] Friedman, H.; Simpson, S. S.; Smith, R., Countable algebra and set existence axioms, Ann. Pure and Applied Logic, 25, 141-181 (1983) · Zbl 0575.03038
[15] Gale, D.; Stewart, I., Infinite games with perfect information, (Annals of Math. Studies, Vol. 28 (1953), Princeton University Press: Princeton University Press Princeton) · Zbl 0050.14305
[16] Gilles, D. B., Ph.D. Thesis (1953), Department of Mathematics, Princeton University
[17] Hodges, W., Building Models by Games (1985), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0569.03015
[18] Kannai, Y., Countably additive measures in cores of games, J. Math. Analysis and Applications, 27, 227-240 (1969) · Zbl 0181.46902
[19] Kleinberg, E., A characterization of determinacy for Turing degree games, Fundamenta Mathematicae, LXXX, 287-291 (1973) · Zbl 0276.02047
[20] Lachlan, A., On some games which are relevant to the theory of R.E. sets, Ann. Math., 92, 291-310 (1970) · Zbl 0276.02023
[21] Luxemburg, W. A.J., Two applications of the method of construction by ultrapowers to analysis, Bull. AMS., 68, 416-419 (1962) · Zbl 0109.00803
[22] Luxemburg, W. A.J., A general theory of monads, (Luxemburg, W. A.J., Applications of Model Theory to Algebra, Analysis, and Probability (1969), Holt, Rhinehart and Winston: Holt, Rhinehart and Winston New York) · Zbl 0207.52402
[23] Luxemburg, W. A.J., Reduced powers of the real numbers systems and equivalents to the Hahn-Banach extension theorem, (Luxemburg, W. A.J., Applications of Model Theory to Algebra, Analysis, and Probability (1969), Holt, Rhinehart and Winston: Holt, Rhinehart and Winston New York) · Zbl 0181.40101
[24] Martin, D. A., Borel determinacy, Ann. Math., 102, 363-371 (1975) · Zbl 0336.02049
[25] Mycielski, J., On the axioms of determinateness I, Fundamenta Mathematica, LIII, 205-244 (1964) · Zbl 0168.25101
[26] Mycielski, J., On the axioms of determinateness II, Fundamenta Mathematica, LIX, 203-212 (1966) · Zbl 0192.04204
[27] Pincus, D., The strength of the Hahn-Banach Theorem, (Hurd, A. E., The Victoria Symposium on Nonstandard Analysis (1973), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0279.02044
[28] Schmeidler, D., On balanced games with infinitely many players, unpublished manuscript (1967), the Hebrew University
[29] Schmeidler, D., Cores of exact games I, J. Math. Analysis and Applications, 40, 214-225 (1972) · Zbl 0243.90071
[30] L.S. Shapley, unpublished lecture notes, Departmet of Mathematics, Princeton University (1953).; L.S. Shapley, unpublished lecture notes, Departmet of Mathematics, Princeton University (1953).
[31] Shapley, L. S., On balanced sets and cores, Naval Res. Logistics Quart., 14, 453-460 (1967)
[32] Solovay, R. M., A model of set theory in which every set of reals is Lebesgue measurable, Ann. Math., 92, 1-56 (1970), Ser. 2 · Zbl 0207.00905
[33] Ulam, S., Zur Mass Theorie in der Allgemeinen Mengenlehre, Fundamenta Mathematicae, 16, 140-150 (1930) · JFM 56.0920.04
[34] von Neumann, J., Zur Theorie der Gesellschaftsspiele, Math. Annalen, 100, 265-320 (1928) · JFM 54.0543.02
[35] von Neumann, J., Über ein Ökonomisches Gleichungsystem und Eine Verallgemeinerung des Brouwerschen Fixpunktsatzes, Ergebnisse Eines Mathematischen Kolloquiums, Vol. 8, 73-83 (1937) · JFM 63.1167.03
[36] Yates, C. E.M., Prioric games and minimal degrees below 0’, Fundamenta Mathematicae, LXXXII, 217-237 (1974) · Zbl 0298.02042
[37] Yates, C. E.M., Banach-Mazur games, comeager sets, and degrees of unsolvability, Math. Proc. Camb. Phil. Soc., 79, 195-220 (1976) · Zbl 0344.02033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.