×

Meta-kernelization with structural parameters. (English) Zbl 1346.68109

Summary: Kernelization is a polynomial-time algorithm that reduces an instance of a parameterized problem to a decision-equivalent instance, the kernel, whose size is bounded by a function of the parameter. In this paper we present meta-theorems that provide polynomial kernels for large classes of graph problems parameterized by a structural parameter of the input graph. Let \(\mathcal{C}\) be an arbitrary but fixed class of graphs of bounded rank-width (or, equivalently, of bounded clique-width). We define the \(\mathcal{C}\)-cover number of a graph to be the smallest number of modules its vertex set can be partitioned into, such that each module induces a subgraph that belongs to \(\mathcal{C}\). We show that each decision problem on graphs which is expressible in Monadic Second Order (MSO) logic has a polynomial kernel with a linear number of vertices when parameterized by the \(\mathcal{C}\)-cover number. We provide similar results for MSO expressible optimization and modulo-counting problems.

MSC:

68Q25 Analysis of algorithms and problem complexity
03B25 Decidability of theories and sets of sentences
05C70 Edge subsets with special properties (factorization, matching, partitioning, covering and packing, etc.)
05C85 Graph algorithms (graph-theoretic aspects)
68W05 Nonnumerical algorithms
Full Text: DOI

References:

[1] Abu-Khzam, F. N.; Kernels, H. Fernau, Annotated, proper and induced, (Parameterized and Exact Computation. Parameterized and Exact Computation, Lecture Notes in Computer Science (2006), Springer Verlag), 264-275 · Zbl 1154.68559
[2] Arnborg, S.; Lagergren, J.; Seese, D., Easy problems for tree-decomposable graphs, J. Algorithms, 12, 2, 308-340 (1991) · Zbl 0734.68073
[3] Bodlaender, H. L.; Downey, R. G.; Fellows, M. R.; Hermelin, D., On problems without polynomial kernels, J. Comput. Syst. Sci., 75, 8, 423-434 (2009) · Zbl 1192.68288
[4] Bodlaender, H. L.; Fomin, F. V.; Lokshtanov, D.; Penninkx, E.; Saurabh, S.; Thilikos, D. M., (Meta) Kernelization, (FOCS 2009 (2009), IEEE Computer Society), 629-638 · Zbl 1292.68089
[5] Bodlaender, H. L.; Jansen, B. M.P.; Kratsch, S., Preprocessing for treewidth: a combinatorial analysis through kernelization, SIAM J. Discrete Math., 27, 4, 2108-2142 (2013) · Zbl 1290.05143
[6] Bui-Xuan, B.-M.; Habib, M.; Limouzy, V.; de Montgolfier, F., Algorithmic aspects of a general modular decomposition theory, Discrete Appl. Math., 157, 9, 1993-2009 (2009) · Zbl 1190.68029
[7] Bui-Xuan, B.-M.; Telle, J. A.; Vatshelle, M., Boolean-width of graphs, Theor. Comput. Sci., 412, 39, 5187-5204 (2011) · Zbl 1225.68133
[8] Charbit, P.; de Montgolfier, F.; Raffinot, M., Linear time split decomposition revisited, SIAM J. Discrete Math., 26, 2, 499-514 (2012) · Zbl 1248.68369
[9] Chein, M.; Habib, M.; Maurer, M., Partitive hypergraphs, Discrete Math., 37, 1, 35-50 (1981) · Zbl 0478.05071
[10] Courcelle, B., The monadic second-order logic of graphs. I. Recognizable sets of finite graphs, Inf. Comput., 85, 1, 12-75 (1990) · Zbl 0722.03008
[11] Courcelle, B.; Engelfriet, J., Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach, Encyclopedia of Mathematics and Its Applications, vol. 138 (2012), Cambridge University Press · Zbl 1257.68006
[12] Courcelle, B.; Makowsky, J. A.; Rotics, U., Linear time solvable optimization problems on graphs of bounded clique-width, Theory Comput. Syst., 33, 2, 125-150 (2000) · Zbl 1009.68102
[13] Cunningham, W. H., Decomposition of directed graphs, SIAM J. Algebr. Discrete Methods, 3, 2, 214-228 (1982) · Zbl 0497.05031
[14] Diestel, R., Graph Theory, Graduate Texts in Mathematics, vol. 173 (2000), Springer Verlag: Springer Verlag New York · Zbl 0945.05002
[15] Downey, R.; Fellows, M. R.; Stege, U., Parameterized complexity: a framework for systematically confronting computational intractability, (Contemporary Trends in Discrete Mathematics: From DIMACS and DIMATIA to the Future. Contemporary Trends in Discrete Mathematics: From DIMACS and DIMATIA to the Future, AMS-DIMACS, vol. 49 (1999), American Mathematical Society), 49-99 · Zbl 0935.68046
[16] Eiben, E.; Ganian, R.; Szeider, S., Meta-kernelization using well-structured modulators, (Proceedings of IPEC 2015, the 10th International Symposium on Parameterized and Exact Computation. Proceedings of IPEC 2015, the 10th International Symposium on Parameterized and Exact Computation, LIPIcs (2015), Schloss Dagstuhl - Leibniz-Zentrum für Informatik), in press · Zbl 1378.68073
[17] Fellows, M. R., The lost continent of polynomial time: preprocessing and kernelization, (IWPEC 2006. IWPEC 2006, Lecture Notes in Computer Science, vol. 4169 (2006), Springer Verlag), 276-277 · Zbl 1154.68560
[18] Fellows, M. R.; Jansen, B. M.; Rosamond, F., Towards fully multivariate algorithmics: parameter ecology and the deconstruction of computational complexity, Eur. J. Comb., 34, 3, 541-566 (2013) · Zbl 1448.68465
[19] Flum, J.; Grohe, M., Parameterized Complexity Theory, Texts in Theoretical Computer Science. An EATCS Series, vol. XIV (2006), Springer Verlag: Springer Verlag Berlin · Zbl 1143.68016
[20] Kernelization, F. V. Fomin, (CSR 2010. CSR 2010, Lecture Notes in Computer Science, vol. 6072 (2010), Springer Verlag), 107-108
[21] Fomin, F. V.; Lokshtanov, D.; Misra, N.; Saurabh, S., Planar f-deletion: approximation, kernelization and optimal FPT algorithms, (FOCS 2012 (2012), IEEE Computer Society), 470-479
[22] Fortnow, L.; Santhanam, R., Infeasibility of instance compression and succinct PCPs for NP, J. Comput. Syst. Sci., 77, 1, 91-106 (2011) · Zbl 1233.68144
[23] Gajarský, J.; Hlinený, P.; Obdrzálek, J.; Ordyniak, S.; Reidl, F.; Rossmanith, P.; Villaamil, F. S.; Sikdar, S., Kernelization using structural parameters on sparse graph classes, (ESA (2013)), 529-540 · Zbl 1353.68126
[24] Ganian, R.; Hliněný, P., On parse trees and Myhill-Nerode-type tools for handling graphs of bounded rank-width, Discrete Appl. Math., 158, 7, 851-867 (2010) · Zbl 1231.05096
[25] Gaspers, S.; Szeider, S., Limits of preprocessing in constraint satisfaction and reasoning, Artif. Intell., 216, 1-19 (2014) · Zbl 1405.68139
[26] Göbel, A.; Goldberg, L. A.; Richerby, D., Counting homomorphisms to cactus graphs modulo 2, (STACS. STACS, LIPIcs, vol. 25 (2014), Schloss Dagstuhl - Leibniz-Zentrum für Informatik), 350-361 · Zbl 1359.05061
[27] Guo, J.; Niedermeier, R., Invitation to data reduction and problem kernelization, ACM SIGACT News, 38, 2, 31-45 (Mar. 2007)
[28] Hliněný, P.; Oum, S., Finding branch-decompositions and rank-decompositions, SIAM J. Comput., 38, 3, 1012-1032 (2008) · Zbl 1163.05331
[29] Lampis, M., Algorithmic meta-theorems for restrictions of treewidth, Algorithmica, 64, 1, 19-37 (2012) · Zbl 1252.68154
[30] Libkin, L., Elements of Finite Model Theory (2004), Springer · Zbl 1060.03002
[31] Lokshtanov, D.; Misra, N.; Saurabh, S., Kernelization - preprocessing with a guarantee, (Bodlaender, H. L.; Downey, R.; Fomin, F. V.; Marx, D., The Multivariate Algorithmic Revolution and Beyond. The Multivariate Algorithmic Revolution and Beyond, Lecture Notes in Computer Science, vol. 7370 (2012), Springer Verlag), 129-161 · Zbl 1358.68141
[32] Misra, N.; Raman, V.; Saurabh, S., Lower bounds on kernelization, Discrete Optim., 8, 1, 110-128 (2011) · Zbl 1248.90078
[33] Oum, S.; Seymour, P., Approximating clique-width and branch-width, J. Comb. Theory, Ser. B, 96, 4, 514-528 (2006) · Zbl 1114.05022
[34] Papadimitriou, C. H.; Zachos, S., Two remarks on the power of counting, (Theoretical Computer Science. Theoretical Computer Science, Lecture Notes in Computer Science, vol. 145 (1983), Springer), 269-276 · Zbl 0506.68039
[35] Robertson, N.; Seymour, P. D., Graph minors X. Obstructions to tree-decomposition, J. Comb. Theory, Ser. B, 52, 2, 153-190 (1991) · Zbl 0764.05069
[36] Rosamond, F., Table of races, (Parameterized Complexity Newsletter (2010)), 4-5
[37] Valiant, L. G., Accidental algorithms, (FOCS (2006), IEEE Computer Society), 509-517
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.