×

Elastic solids with strain-gradient elastic boundary surfaces. (English) Zbl 07923975

Summary: Recent works have shown that in contrast to classical linear elastic fracture mechanics, endowing crack fronts in a brittle Green-elastic solid with Steigmann-Ogden surface elasticity yields a model that predicts bounded stresses and strains at the crack tips for plane-strain problems. However, singularities persist for anti-plane shear (mode-III fracture) under far-field loading, even when Steigmann-Ogden surface elasticity is incorporated. This work is motivated by obtaining a model of brittle fracture capable of predicting bounded stresses and strains for all modes of loading. We formulate an exact general theory of a three-dimensional solid containing a boundary surface with strain-gradient surface elasticity. For planar reference surfaces parameterized by flat coordinates, the form of surface elasticity reduces to that introduced by Hilgers and Pipkin, and when the surface energy is independent of the surface covariant derivative of the stretching, the theory reduces to that of Steigmann and Ogden. We discuss material symmetry using Murdoch and Cohen’s extension of Noll’s theory. We present a model small-strain surface energy that incorporates resistance to geodesic distortion, satisfies strong ellipticity, and requires the same material constants found in the Steigmann-Ogden theory. Finally, we derive and apply the linearized theory to mode-III fracture in an infinite plate under far-field loading. We prove that there always exists a unique classical solution to the governing integro-differential equation, and in contrast to using Steigmann-Ogden surface elasticity, our model is consistent with the linearization assumption in predicting finite stresses and strains at the crack tips.

MSC:

74B20 Nonlinear elasticity
74K25 Shells
74R10 Brittle fracture

References:

[1] Aifantis, E. C.; Altan, S. B., On the structure of the mode III crack-tip in gradient elasticity, Scr. Metall. Mater., 26, 2, 319-324, 1992
[2] Askes, H.; Aifantis, E. C., Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results, Int. J. Solids Struct., 48, 13, 1962-1990, 2011
[3] Bogy, D. B.; Sternberg, E., The effect of couple-stresses on singularities due to discontinuous loadings, Int. J. Solids Struct., 3, 757-770, 1967 · Zbl 0149.42803
[4] Bogy, D. B.; Sternberg, E., The effect of couple-stresses on the corner singularity due to an asymmetric shear loading, Int. J. Solids Struct., 4, 159-174, 1968 · Zbl 0172.50002
[5] Broberg, K. B., Cracks and Fracture, 1999, San Diego: Academic Press, San Diego
[6] Dai, M.; Gharahi, A.; Schiavone, P., Analytic solution for a circular nano-inhomogeneity with interface stretching and bending resistance in plane strain deformations, Appl. Math. Model., 55, 160-170, 2018 · Zbl 1480.74051
[7] Eremeyev, V. A., Strongly anisotropic surface elasticity and antiplane surface waves, Phil. Trans. R. Soc. A, 378, 2019
[8] Eremeyev, V. A.; Lebedev, L. P.; Cloud, M. J., On weak solutions of boundary value problems within the surface elasticity of \({N}\) th order, Z. Angew. Math. Mech., 101, 2021 · Zbl 07809795
[9] Ferguson, L. A.; Muddamallappa, M.; Walton, J. R., Numerical simulation of mode-III fracture incorporating interfacial mechanics, Int. J. Fract., 192, 1, 47-56, 2015
[10] Giorgio, I.; Della Corte, A.; dell’Isola, F.; Steigmann, D. J., Buckling modes in pantographic lattices, C. R., Méc., 344, 487-501, 2016
[11] Giorgio, I.; dell’Isola, F.; Steigmann, D. J., Axisymmetric deformations of a second grade elastic cylinder, Mech. Res. Commun., 94, 45-48, 2018
[12] Giorgio, I.; dell’Isola, F.; Steigmann, D. J., Edge effects in Hypar nets, C. R., Méc., 347, 114-123, 2019
[13] Giorgio, I.; Grygoruk, R.; dell’Isola, F.; Steigmann, D. J., Pattern formation in the three-dimensional deformations of fibered sheets, Mech. Res. Commun., 69, 164-171, 2015
[14] Gorbushin, N.; Eremeyev, V. A.; Mishuris, G., On stress singularity near the tip of a crack with surface stresses, Int. J. Eng. Sci., 146, 2020 · Zbl 1476.74045
[15] Graves, L. M., The Weierstrass condition for multiple integral variation problems, Duke Math. J., 5, 656-660, 1939 · JFM 65.0453.03
[16] Green, A. E.; Adkins, J. E., Large Elastic Deformations, 1970, Oxford: Clarendon Press, Oxford · Zbl 0227.73067
[17] Gurtin, M. E.; Murdoch, A. I., A continuum theory of elastic material surfaces, Arch. Ration. Mech. Anal., 57, 291-323, 1975 · Zbl 0326.73001
[18] Gurtin, M. E.; Murdoch, A. I., Surface stress in solids, Int. J. Solids Struct., 14, 6, 431-440, 1978 · Zbl 0377.73001
[19] Han, Z.; Mogilevskaya, S. G.; Schillinger, D., Local fields and overall transverse properties of unidirectional composite materials with multiple nanofibers and Steigmann-Ogden interfaces, Int. J. Solids Struct., 147, 166-182, 2018
[20] Hilgers, M. G.; Pipkin, A. C., Elastic sheets with bending stiffness, Q. J. Mech. Appl. Math., 45, 1, 57-75, 1992 · Zbl 0752.73039
[21] Hilgers, M. G.; Pipkin, A. C., The Graves condition for variational problems of arbitrary order, IMA J. Appl. Math., 48, 265-269, 1992 · Zbl 0767.49004
[22] Hilgers, M. G.; Pipkin, A. C., Bending energy of highly elastic membranes. II, Q. Appl. Math., 54, 2, 307-316, 1996 · Zbl 0858.73041
[23] Kim, C. I.; Ru, C. Q.; Schiavone, P., A clarification of the role of crack-tip conditions in linear elasticity with surface effects, Math. Mech. Solids, 18, 1, 59-66, 2013 · Zbl 1528.74005
[24] Koiter, W. T., On the nonlinear theory of thin elastic shells, Proc. K. Ned. Akad. Wet. B, 69, 1-54, 1966
[25] Li, X.; Mi, C., Effects of surface tension and Steigmann-Ogden surface elasticity on hertzian contact properties, Int. J. Eng. Sci., 145, 2019 · Zbl 1476.74116
[26] Li, X.; Mi, C., Nanoindentation hardness of a Steigmann-Ogden surface bounding an elastic half-space, Math. Mech. Solids, 24, 9, 2754-2766, 2019 · Zbl 07273338
[27] Li, X.; Mi, C., Nanoindentation of a half-space due to a rigid cylindrical roller based on Steigmann-Ogden surface mechanical model, Int. J. Mech. Mater. Des., 17, 2021
[28] Mi, C., Elastic behavior of a half-space with a Steigmann-Ogden boundary under nanoscale frictionless patch loads, Int. J. Eng. Sci., 129, 129-144, 2018 · Zbl 1423.74674
[29] Mogilevskaya, S. G.; Kushch, V.; Zemlyanova, A., Displacements representations for the problems with spherical and circular material surfaces, Q. J. Mech. Appl. Math., 72, 449-471, 11, 2019 · Zbl 1479.74110
[30] Mogilevskaya, S.G., Zemlyanova, A.Y.: On spherical inhomogeneity with Steigmann-Ogden interface. J. Appl. Mech. 85 (2018)
[31] Muki, R.; Sternberg, E., The influence of couple-stresses on singular concentrations in elastic solids, Z. Angew. Math. Phys., 16, 611-648, 1965
[32] Muki, R.; Sternberg, E., The effect of couple-stresses on the stress concentration around a crack, Int. J. Solids Struct., 3, 69-95, 1967
[33] Murdoch, A. I.; Cohen, H., Symmetry considerations for material surfaces, Arch. Ration. Mech. Anal., 72, 1, 61-98, 1979 · Zbl 0424.73063
[34] Murdoch, A. I.; Cohen, H., Addendum: “Symmetry considerations for material surfaces” [Arch. Rational Mech. Anal. 72(1), 61-98 (1979/80); MR 81d:73003], Arch. Ration. Mech. Anal., 76, 4, 393-400, 1981 · Zbl 0468.73003
[35] Noll, W., A mathematical theory of the mechanical behavior of continuous media, Arch. Ration. Mech. Anal., 2, 198-226, 1958 · Zbl 0083.39303
[36] Oh, S.; Walton, J. R.; Slattery, J., A theory of fracture based upon an extension of continuum mechanics to the nanoscale, J. Appl. Mech., 73, 792-780, 2006 · Zbl 1111.74582
[37] Pipkin, A. C., Some developments in the theory of inextensible networks, Q. Appl. Math., 38, 343-355, 1981 · Zbl 0484.73009
[38] Pipkin, A. C., The relaxed energy density for isotropic elastic membranes, IMA J. Appl. Math., 36, 1, 85-99, 1986 · Zbl 0644.73047
[39] Rivlin, R. S., Plane strain of a net formed by inextensible cords, J. Ration. Mech. Anal., 4, 951-974, 1955 · Zbl 0065.40202
[40] Sendova, T.; Walton, J. R., A new approach to the modeling and analysis of fracture through extension of continuum mechanics to the nanoscale, Math. Mech. Solids, 15, 3, 368-413, 2010 · Zbl 1197.74010
[41] Steigmann, D. J., Proof of a conjecture in elastic membrane theory, J. Appl. Mech., 53, 955-956, 1986 · Zbl 0606.73077
[42] Steigmann, D. J., Extension of Koiter’s linear shell theory to materials exhibiting arbitrary symmetry, Int. J. Eng. Sci., 51, 216-232, 2012 · Zbl 1423.74582
[43] Steigmann, D. J., Koiter’s shell theory from the perspective of three-dimensional nonlinear elasticity, J. Elast., 111, 91-107, 2013 · Zbl 1315.74016
[44] Steigmann, D. J., Continuum theory for elastic sheets formed by inextensible crossed elasticae, Int. J. Non-Linear Mech., 106, 324-329, 2018
[45] Steigmann, D. J., Equilibrium of lattice shells, J. Eng. Math., 109, 47-61, 2018 · Zbl 1408.74035
[46] Steigmann, D. J.; dell’Isola, F., Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching, Acta Mech. Sin., 31, 373-382, 2015 · Zbl 1346.74128
[47] Steigmann, D. J.; Ogden, R. W., Plane deformations of elastic solids with intrinsic boundary elasticity, Proc. R. Soc. Lond. A, 453, 853-877, 1997 · Zbl 0938.74014
[48] Steigmann, D. J.; Ogden, R. W., Elastic surface-substrate interactions, Proc. R. Soc. Lond. A, 455, 437-474, 1999 · Zbl 0926.74016
[49] Steigmann, D. J.; Pipkin, A. C., Equilibrium of elastic nets, Philos. Trans. R. Soc. Lond. Ser. A, 335, 1639, 419-454, 1991 · Zbl 0734.73098
[50] Truesdell, C.; Noll, W., The Nonlinear Field Theories of Mechanics, 1992, Berlin: Springer, Berlin · Zbl 0779.73004
[51] Walton, J. R., A note on fracture models incorporating surface elasticity, J. Elast., 109, 95-102, 2012 · Zbl 1311.74107
[52] Walton, J. R., Plane-strain fracture with curvature-dependent surface tension: mixed-mode loading, J. Elast., 114, 1, 127-142, 2014 · Zbl 1282.74082
[53] Wang, J.; Yan, P.; Dong, L.; Atluri, S. N., Spherical nano-inhomogeneity with the Steigmann-Ogden interface model under general uniform far-field stress loading, Int. J. Solids Struct., 185-186, 311-323, 2020
[54] Wang, W. B.; Pipkin, A. C., Inextensible networks with bending stiffness, Q. J. Appl. Math., 39, 343-359, 1986 · Zbl 0594.73047
[55] Zemlyanova, A. Y., The effect of a curvature-dependent surface tension on the singularities at the tips of a straight interface crack, Q. J. Appl. Math., 66, 199, 2012 · Zbl 1291.74165
[56] Zemlyanova, A. Y., Curvilinear mode-I/mode-II interface fracture with a curvature-dependent surface tension on the boundary, IMA J. Appl. Math., 81, 1112, 2014 · Zbl 1408.74011
[57] Zemlyanova, A. Y., A straight mixed-mode fracture with the Steigmann-Ogden boundary condition, Q. J. Mech. Appl. Math., 70, 65-86, 2017 · Zbl 1458.74129
[58] Zemlyanova, A. Y., Frictionless contact of a rigid stamp with a semi-plane in the presence of surface elasticity in the Steigmann-Ogden form, Math. Mech. Solids, 23, 8, 1140-1155, 2018 · Zbl 1401.74225
[59] Zemlyanova, A. Y., An adhesive contact problem for a semi-plane with a surface elasticity in the Steigmann-Ogden form, J. Elast., 136, 103-121, 2019 · Zbl 1415.74008
[60] Zemlyanova, A. Y., Interaction of multiple plane straight fractures in the presence of the Steigmann-Ogden surface energy, SIAM J. Appl. Math., 80, 5, 2098-2119, 2020 · Zbl 1448.74094
[61] Zemlyanova, A. Y., An axisymmetric problem for a penny-shaped crack under the influence of the Steigmann-Ogden surface energy, Proc. R. Soc. Lond. A, 477, 2021
[62] Zemlyanova, A. Y.; Mogilevskaya, S. G., Circular inhomogeneity with Steigmann-Ogden interface: Local fields, neutrality, and Maxwell’s type approximation formula, Int. J. Solids Struct., 135, 85-98, 2018
[63] Zemlyanova, A. Y.; Walton, J. R., Modeling of a curvilinear planar crack with a curvature-dependent surface tension, SIAM J. Appl. Math., 72, 5, 1474-1492, 2012 · Zbl 1264.74014
[64] Zemlyanova, A. Y.; White, L. M., Axisymmetric frictionless indentation of a rigid stamp into a semi-space with a surface energetic boundary, Math. Mech. Solids, 27, 2, 334-347, 2022 · Zbl 07590427
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.