×

Local symmetry group in the general theory of elastic shells. (English) Zbl 1105.74019

Summary: We establish the local symmetry group of the dynamically and kinematically exact theory of elastic shells. The group consists of an ordered triple of tensors which make the shell strain energy density invariant under the change of reference placement. Definitions of the fluid shell, solid shell, and membrane shell are introduced in terms of the symmetry group. Within solid shells we discuss in more detail the isotropic, hemitropic and orthotropic shells, and the corresponding invariant properties of the strain energy density. For physically linear shells, when the density becomes a quadratic function of shell strain and bending tensors, reduced representations of the density are established for orthotropic, cubic-symmetric and isotropic shells. The reduced representations contain much less independent material constants to be found from experiments.

MSC:

74K25 Shells

References:

[1] Adeleke, S.A.: On possible symmetry of shells. In: Dafermos, C.M., Joseph D.D., Leslie, F.M. (eds.) The Breadth and Depth of Continuum Mechanics. A Collection of Papers Dedicated to J.L. Ericksen on his 60th Birthday, pp. 745–757. Springer, Berlin Heidelberg New York (1986)
[2] Altenbach, H., Zhilin, P.A.: The theory of elastic thin shells (in Russian). Adv. Mech. 11, 107–148 (1988)
[3] Altenbach, H., Zhilin, P.A.: The theory of simple elastic shells. In: Kienzler, R., Altenbach, H., Ott, I. (eds.) Theories of Plates and Shells: Critical Review and New Applications, pp. 1–12. Springer, Berlin Heidelberg New York (2004) · Zbl 1182.74142
[4] Altenbach, H., Naumenko, K., Zhilin, P.A.: A direct approach to the formulation of constitutive equations for rods and shells. In: Pietraszkiewicz, W., Szymczak, C. (eds.) Shell Structures: Theory and Applications, pp. 87–90. Taylor & Francis, London (2005)
[5] Arfken G.B., Weber, H.J.: Mathematical Methods for Physicists. Springer, Berlin Heidelberg New York (2000) · Zbl 0970.00005
[6] Carrol, M.M., Naghdi, P.M.: The influence of the reference geometry on the response of elastic shells. Arch. Ration. Mech. Anal. 48, 302–318 (1972) · Zbl 0283.73034 · doi:10.1007/BF00250856
[7] Chróścielewski, J., Makowski, J., Stumpf, H.: Genuinely Resultant Shell Finite Elements Accounting For Geometric And Material Non-Linearity. Int. J. Numer. Methods Eng. 35 (1992) 63–94 · Zbl 0780.73075 · doi:10.1002/nme.1620350105
[8] Chróścielewski, J., Makowski, J., Pietraszkiewicz, W.: Statics and Dynamics of Multifold Shells: Nonlinear Theory and Finite Element Method (in Polish). Wydawnictwo IPPT PAN, Warszawa (2004)
[9] Cohen, H., Wang, C.-C.: A mathematical analysis of the simplest direct models for rods and shells. Arch. Rational Mech. Anal. 108, 35–81 (1989) · Zbl 0697.73001 · doi:10.1007/BF01055752
[10] Cosserat, E., Cosserat, F.: Théorie des corps deformables. Herman et Flis, Paris (1909); English translation: NASA TT F-11, 561, NASA, Washington, District of Columbia (1968) · JFM 40.0862.02
[11] de Gennes, P.G.: The Physics of Liquid Crystals. Clarendon, Oxford (1974) · Zbl 0295.76005
[12] Eremeyev, V.A.: Nonlinear micropolar shells: Theory and applications. In: Pietraszkiewicz, W., Szymczak, C. (eds.) Shell Structures: Theory and Applications, pp. 11–18. Taylor & Francis, London (2005)
[13] Eremeyev, V.A., Pietraszkiewicz, W.: The nonlinear theory of elastic shells with phase transitions. J. Elasticity 74, 67–86 (2004) · Zbl 1058.74058 · doi:10.1023/B:ELAS.0000026106.09385.8c
[14] Eremeyev, V.A., Zubov, L.M.: The theory of elastic and viscoelastic micropolar liquids. J. Appl. Math. Mech. 63, 755–767 (1999) · doi:10.1016/S0021-8928(99)00096-9
[15] Eremeyev, V.A., Zubov, L.M.: The general nonlinear theory of elastic micropolar shells (in Russian). Izvestiya VUZov, Sev.-Kakavk. Region, Estestv. Nauki, Special issue: Nonlinear Problems of Continuum Mechanics, pp. 124–169 (2003)
[16] Ericksen, J.L.: Symmetry transformations for thin elastic shells. Arch. Ration. Mech. Anal. 47, 1–14 (1972) · Zbl 0242.73045 · doi:10.1007/BF00252184
[17] Ericksen, J.L.: Apparent symmetry of certain thin elastic shells. J. Meć. 12, 12–18 (1973) · Zbl 0256.73034
[18] Ericksen, J.L., Truesdell, C.: Exact theory of stress and strain in rods and shells. Arch. Ration. Mech. Anal. 1, 295–323 (1957) · Zbl 0081.39303 · doi:10.1007/BF00298012
[19] Eringen, A.C., Kafadar, C.B.: Polar field theories. In. Eringen A.C. (ed.) Continuum Physics, vol. 4, pp. 1–75. Academic, New York (1976)
[20] Eringen, A.C.: Microcontinuum Field Theory. I. Foundations and Solids. Springer, Berlin Heidelberg New York (1999) · Zbl 0953.74002
[21] Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975) · Zbl 0326.73001 · doi:10.1007/BF00261375
[22] Konopińska, V., Pietraszkiewicz, W.: Exact resultant equilibrium conditions in the non-linear theory of branching and self-intersecting shells. Int. J. Solids Struct. (2006) (in press). Available online 29 April 2006. DOI: 10.1016/j.ijsolstr.2006.04.030 · Zbl 1119.74030
[23] Libai, A., Simmonds, J.G.: Nonlinear elastic shell theory. Adv. Appl. Mech. 23, 271–371 (1983) · Zbl 0575.73079 · doi:10.1016/S0065-2156(08)70245-X
[24] Libai, A., Simmonds, J.G.: The Nonlinear Theory of Elastic Shells, 2nd ed. Cambridge, UK (1998) · Zbl 0918.73003
[25] Makowski, J., Pietraszkiewicz, W., Stumpf, H.: Jump conditions in the nonlinear theory of thin irregular shells. J. Elast. 54, 1–26 (1999) · Zbl 0952.74040 · doi:10.1023/A:1007645414077
[26] Makowski, J., Stumpf, H.: Buckling equations for elastic shells with rotational degrees of freedom undergoing finite strain deformation. Int. J. Solids Struct. 26, 353–368 (1990) · Zbl 0706.73044 · doi:10.1016/0020-7683(90)90045-W
[27] Man, C.-S., Cohen, H.: A coordinate-free approach to the kinematics of membranes. J. Elast. 16, 97–104 (1986) · Zbl 0582.73011 · doi:10.1007/BF00041068
[28] Murdoch, A.I.: A coordinate free approach to surface kinematics. Glasg. Mat. J. 32, 299–307 (1990) · Zbl 0721.73016 · doi:10.1017/S0017089500009381
[29] Murdoch, A.I.: A thermodynamical theory of elastic material interfaces. Q. J. Mech. Appl. Math. XXIX, 245–274 (1976) · Zbl 0398.73003 · doi:10.1093/qjmam/29.3.245
[30] Murdoch, A.I., Cohen, H.: Symmetry considerations for material surfaces. Arch. Ration. Mech. Anal. 72, 61–98 (1979) · Zbl 0424.73063 · doi:10.1007/BF00250737
[31] Murdoch, A.I., Cohen, H.: Symmetry considerations for material surfaces. Addendum. Arch. Ration. Mech. Anal. 76, 393–400 (1981) · Zbl 0468.73003 · doi:10.1007/BF00249972
[32] Naghdi, P.M.: The theory of plates and shells. In: Flügge, S. (ed.) Handbuch der Physik, vol. VIa/2, pp. 425–640. Springer, Berlin Heidelberg New York (1972)
[33] Nowacki, W.: Theory of Asymmetric Elasticity. Pergamon, Oxford (1986) · Zbl 0604.73020
[34] Pietraszkiewicz, W.: Nonlinear theories of shells (in Polish). In: Woźniak, C. (ed.) Mechanics of Elastic Plates and Shells (in Polish), pp. 424–497. Wydawnictwo Naukowe PWN, Warszawa (2001)
[35] Pietraszkiewicz, W., Chróścielewski, J., Makowski, J.: On dynamically and kinematically exact theory of shells. In: Pietraszkiewicz, W., Szymczak, C. (eds.) Shell Structures: Theory and Applications, pp. 163–167. Taylor & Francis, London (2005)
[36] Reissner, E.: Linear and nonlinear theory of shells. In: Fung, Y.C., Sechler, E.E. (eds.) Thin Shell Structures, pp. 29–44. Prentice-Hall, Englewood Cliffs, NJ (1974)
[37] Rubin, M.B.: Cosserat Theories: Shells, Rods and Points. Kluwer, Dordrecht (2000) · Zbl 0984.74003
[38] Šilhavý, M.: The Mechanics and Thermodynamics of Continuous Media. Springer, Berlin Heidelberg New York (1997) · Zbl 0870.73004
[39] Spencer, A.J.M.: Theory of Invariants. In: Eringen A.C. (ed.) Continuum Physics, vol. 1, pp. 292–307. Academic, New York (1971)
[40] Steigmann, D.J.: Elements of the theory of elastic surfaces. In: Fu, I.B., Ogden, R.W. (eds.) Nonlinear Elasticity: Theory and Applications, pp. 268–304. Cambridge University Press, UK (2001) · Zbl 0993.74039
[41] Steigmann, D.J., Ogden, R.W.: Elastic surface-substrate interaction. Proc. R. Soc. Lond. A 455, 437–474 (1999) · Zbl 0926.74016 · doi:10.1098/rspa.1999.0320
[42] Truesdell, C., Noll, W.: The nonlinear field theories of mechanics. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/3, pp. 1–602. Springer, Berlin Heidelberg New York (1965) · Zbl 1068.74002
[43] Truesdell, C.: Rational Thermodynamics. Springer, Berlin Heidelberg New York (1984) · Zbl 0598.73002
[44] Truesdell, C.: A First Course in Rational Continuum Mechanics. Academic, New York (1977) · Zbl 0357.73011
[45] Wang, C.-C.: On the response functions of isotropic elastic shells. Arch. Ration. Mech. Anal. 50, 81–98 (1973) · Zbl 0276.73045 · doi:10.1007/BF00249876
[46] Wang C.-C., Truesdell, C.: Introduction to Rational Elasticity. Noordhoff, Leyden (1973) · Zbl 0308.73001
[47] Zhilin, P.A.: Basic equations of the non-classical shell theory (in Russian). Tr. LPI 386, 29–46 (1982)
[48] Zubov, L.M.: Nonlinear Theory of Dislocations and Disclinations in Elastic Bodies. Springer, Berlin Heidelberg New York (1997) · Zbl 0899.73001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.