×

Weak existence of the squared Bessel and CIR processes with skew reflection on a deterministic time-dependent curve. (English) Zbl 1195.60085

Summary: Let \(\sigma>0\), \(\delta\geq 1\), \(b\geq 0\), \(0<p<1\). Let \(\lambda\) be a continuous and positive function in \(H^{1,2}_{\text{loc}}(\mathbb R^+)\). Using the technique of moving domains [see F. Russo and G. Trutnau, J. Funct. Anal. 221, No. 1, 37–82 (2005; Zbl 1071.60069)], and classical direct stochastic calculus, we construct for positive initial conditions a pair of continuous and positive semimartingales \((R,\sqrt R)\) with
\[ dR_t=\sigma\sqrt{R_1}dW_t+\frac{\sigma^2}{4}\;(\delta-bR_t)dt+(2p-1)d\ell^0_t(R-\lambda^2), \]
and
\[ dR_t=\frac\sigma 2\;dW_t+\frac{\sigma^2}{8}\left(\frac{\delta-1}{\sqrt{R_t}}-b\sqrt{R_t}\right)dt+(2p-1)d\ell^0_t(\sqrt R-\lambda)+\frac{\mathbb I_{\{\delta=1\}}}{2}\;d\ell^{0+}_t(\sqrt R), \]
where the symmetric local times \(\ell^0(R-\lambda^2)\), \(\ell^0(\sqrt R-\lambda)\), of the respective semimartingales \(R-\lambda^2\), \(\sqrt R-\lambda\) are related through the formula
\[ 2\sqrt R\,d\ell^0(\sqrt R-\lambda)=d\ell^0(R-\lambda^2). \]
Well-known special cases are the (squared) Bessel processes (choose \(\sigma=2\), \(b=0\), and \(\lambda^2\equiv 0\), or equivalently \(p=\frac12\)), and the Cox-Ingersoll-Ross process (i.e. \(R\), with \(\lambda^2\equiv 0\), or equivalently \(p=\frac12\)). The case \(0<\delta<1\) can also be handled, but is different. If \(|p|>1\), then there is no solution.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60J60 Diffusion processes
60J55 Local time and additive functionals
35K20 Initial-boundary value problems for second-order parabolic equations
31C25 Dirichlet forms
31C15 Potentials and capacities on other spaces

Citations:

Zbl 1071.60069

References:

[1] Burdzy, K.; Chen, Z.-Q.; Sylvester, J., The heat equation and reflected Brownian motion in time-dependent domains, Ann. Probab., 32, 1B, 775-804 (2004) · Zbl 1046.60060
[2] S.N. Ethier, T.G. Kurtz, Markov processes. Characterization and convergence, in: Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John.; S.N. Ethier, T.G. Kurtz, Markov processes. Characterization and convergence, in: Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John. · Zbl 1089.60005
[3] Fukushima, M.; Oshima, Y.; Takeda, M., Dirichlet forms and Symmetric Markov processes (1994), Walter de Gruyter: Walter de Gruyter Berlin, New York · Zbl 0838.31001
[4] Harrison, J. M.; Shepp, L. A., On skew Brownian motion, Ann. Probab., 9, 2, 309-313 (1981) · Zbl 0462.60076
[5] Le Gall, J.-F., One-dimensional stochastic differential equations involving the local times of the unknown process, (Stochastic Analysis and Applications. Stochastic Analysis and Applications, Swansea, 1983. Stochastic Analysis and Applications. Stochastic Analysis and Applications, Swansea, 1983, Lecture Notes in Math., vol. 1095 (1984), Springer: Springer Berlin), 51-82 · Zbl 0551.60059
[6] Oshima, Y., Time-dependent Dirichlet forms and related stochastic calculus, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 7, 2, 281-316 (2004) · Zbl 1078.60060
[7] Ouknine, Y., Temps local du produit et du sup de deux semimartingales, (Séminaire de Probabilités. Séminaire de Probabilités, XXIV, 1988/89. Séminaire de Probabilités. Séminaire de Probabilités, XXIV, 1988/89, Lecture Notes in Math., vol. 1426 (1990), Springer: Springer Berlin), 477-479 · Zbl 0703.60070
[8] Revuz, D.; Yor, M., Continuous martingales and Brownian motion (1999), Springer Verlag · Zbl 0917.60006
[9] Russo, F.; Trutnau, G., About a construction and some analysis of time inhomogeneous diffusions on monotonely moving domains, J. Funct. Anal., 221, 1, 37-82 (2005) · Zbl 1071.60069
[10] Stannat, W., The theory of generalized Dirichlet forms and its applications in analysis and stochastics, Mem. Amer.Math. Soc., 142, 678 (1999) · Zbl 1230.60006
[11] Temps locaux, Astérisque 52-52, Sociéte mathématique de France, 1978.; Temps locaux, Astérisque 52-52, Sociéte mathématique de France, 1978.
[12] G. Trutnau, Pathwise uniqueness of the squared Bessel process, and CIR process, with skew reflection on a deterministic time dependent curve. arXiv:0804.0123; G. Trutnau, Pathwise uniqueness of the squared Bessel process, and CIR process, with skew reflection on a deterministic time dependent curve. arXiv:0804.0123 · Zbl 1228.60071
[13] Trutnau, G., On Hunt processes and strict capacities associated with generalized Dirichlet forms, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 8, 3, 357-382 (2005) · Zbl 1104.31006
[14] Trutnau, G., Stochastic calculus of generalized Dirichlet forms and applications to stochastic differential equations in infinite dimensions, Osaka J. Math., 37, 13-41 (2000)
[15] Trutnau, G., On a class of non-symmetric diffusions containing fully nonsymmetric distorted Brownian motions, Forum Math., 15, 3, 409-437 (2003) · Zbl 1028.31007
[16] Walsh, J. B., A diffusion with discontinuous local time, Astérisque, 52-53, 37-45 (1978)
[17] Weinryb, S., Etude d���une équation différentielle stochastique avec temps local, (Séminaire de probabilités XVII. Séminaire de probabilités XVII, Lecture Notes in Math., vol. 986 (1983), Springer: Springer Berlin), 72-77 · Zbl 0507.60049
[18] Yan, Jia An, Some formulas for the local time of semimartingales, Chinese Ann. Math., 1, 3-4, 545-551 (1980) · Zbl 0468.60048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.