×

Some results for two-dimensional random walk. II: Additive functionals. (English) Zbl 0994.60053

[For part I see: Advances in combinatorial methods and applications to probability and statistics, 115-124 (1997; Zbl 0882.60069).]
Author’s summary: Let \((T_n,n\geq 0)\) be a simple symmetric random walk on the plane and consider the additive functional \(A_n=\sum_{i=0}^n f(T_i)\), where \(f\) is a real-valued function. We present some exact and asymptotic results for \(A_n\).

MSC:

60G50 Sums of independent random variables; random walks
60J55 Local time and additive functionals
60C05 Combinatorial probability

Citations:

Zbl 0882.60069
Full Text: DOI

References:

[1] Auer, P., The circle homogeneously covered by random walk on \(Z^2\), Statist. Probab. Lett., 9, 403-407 (1990) · Zbl 0698.60059
[2] Csáki, E., A discrete Feynman-Kac formula, J. Statist. Plann. Inference, 34, 63-73 (1993) · Zbl 0768.60059
[3] Csáki, E., Some results for two-dimensional random walk, (Balakrishnan, N., Advances in Combinatorial Methods and Applications to Probability and Statistics (1997), Birkhäuser: Birkhäuser Boston), 115-124 · Zbl 0882.60069
[4] Csáki, E.; Csörgő, M.; Földes, A.; Révész, P., Strong approximation of additive functionals, J. Theoret. Probab., 5, 679-706 (1992) · Zbl 0762.60024
[5] Csáki, E.; Földes, A.; Révész, P., A strong invariance principle for the local time difference of a simple symmetric planar random walk, Studia Sci. Math. Hungar., 34, 25-39 (1998) · Zbl 0931.60067
[6] Csáki, E.; Mohanty, S. G.; Saran, J., On random walks in a plane, Ars Combin., 29, 309-318 (1990) · Zbl 0701.60070
[7] DeTemple, D. W.; Robertson, J. M., Equally likely fixed length paths in graphs, Ars Combin., 17, 243-254 (1984) · Zbl 0548.60013
[8] DeTemple, D. W.; Jones, C. H.; Robertson, J. M., A correction for a lattice path counting formula, Ars Combin., 25, 167-170 (1988) · Zbl 0659.05003
[9] Erdős, P.; Taylor, S. J., Some problems concerning the structure of random walk paths, Acta Math. Acad. Sci. Hungar., 11, 137-162 (1960) · Zbl 0091.13303
[10] Gould, H.W., 1972. Combinatorial Identities. Morgantown, W. VA.; Gould, H.W., 1972. Combinatorial Identities. Morgantown, W. VA. · Zbl 0263.05013
[11] Gupta, A.; Sen, K., A two-dimensional random walk in the presence of a multiple-function barrier, Metron, 35, 189-203 (1977) · Zbl 0427.60082
[12] Gupta, A.; Sen, K., Returns and crossings in a two-dimensional random walk with unspecified terminus, Metron, 37, 137-148 (1979) · Zbl 0467.60065
[13] Guy, R. K.; Krattenthaler, C.; Sagan, B. E., Lattice paths, reflections, & dimension-changing bijections, Ars Combin., 34, 3-15 (1992) · Zbl 0770.05003
[14] Kasahara, Y., A limit theorem for sums of random number of i.i.d. random variables and its application to occupation times of Markov chains, J. Math. Soc. Japan, 37, 197-205 (1985) · Zbl 0568.60039
[15] Kesten, H., Occupation times for Markov and semi-Markov chains, Trans. Amer. Math. Soc., 103, 82-112 (1962) · Zbl 0122.36602
[16] McCrea, W. H.; Whipple, F. J.H., Random paths in two and three dimension, Proc. Roy. Soc. Edinburgh, 60, 281-298 (1940) · Zbl 0027.33903
[17] Révész, P., Random Walk in Random and Non-random Environments (1990), World Scientific: World Scientific Singapore · Zbl 0733.60091
[18] Saran, J., Some distributions related to a random walk in a plane, Ars Combin., 44, 119-127 (1996) · Zbl 0889.05006
[19] Saran, J.; Rani, S., Some joint distributions concerning random walk in a plane, Ars Combin., 38, 33-45 (1994) · Zbl 0819.60057
[20] Spitzer, F., Principles of Random Walk (1964), Van Nostrand: Van Nostrand Princeton, NJ · Zbl 0119.34304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.