×

Optimal design of sensors via geometric criteria. (English) Zbl 1521.49029

Given a set \(\Omega\subset\mathbb{R}^N\), and an amount of volume \(c\in (0, |\Omega|)\), the authors study the min-max problem \[ \inf\left\{\, \sup_{x\in\Omega}\{\, \mathrm{dist}(x; \omega)\,\}\,:\, |\omega|=c,\, \omega\subset\Omega\,\right\} \] Without any additional constraint on \(\omega\), the authors show that the problem is ill-posed as the infimum is zero and it is asymptotically attained by a sequence of disconnected sets with an increasing number of connected components. Assuming the convexity of the competitors \(\omega\), they show that there exist minima and that the function \[ f\colon (0, |\Omega|)\ni c\mapsto \inf\left\{\, \sup_{x\in\Omega} \mathrm{dist}\,(x; \omega)\,:\, |\omega|=c,\, \omega\subset\Omega\,\right\} \] is continuous and strictly decreasing (ref.first part of Theorem 1). One might naively expect the solution(s) \(\omega\) to inherit the symmetries of the ambient set \(\Omega\). The authors show this not to be the case, and that symmetry-breaking phenomena might happen already for the choice \(\Omega=[0,1]\times[0,1]\) (ref.Theorem 2).
It is worth mentioning, that they also show the problem to be equivalent to few other shape optimization problems (ref.second part of Theorem 1), which are more suitable to be treated numerically, and some qualitative and numerical results in the planar case appear in Sections 4 and 5.

MSC:

49Q10 Optimization of shapes other than minimal surfaces
52A40 Inequalities and extremum problems involving convexity in convex geometry
65K99 Numerical methods for mathematical programming, optimization and variational techniques
49K21 Optimality conditions for problems involving relations other than differential equations

References:

[1] Alimov, AR; Tsarkov, IG, The Chebyshev center of a set, the Jung constant, and their applications, Uspekhi Mat. Nauk, 74, 5-449, 3-82 (2019)
[2] Antunes, PRS; Bogosel, B., Parametric shape optimization using the support function, Comput. Optim. Appl., 82, 1, 107-138 (2022) · Zbl 1490.90284 · doi:10.1007/s10589-022-00360-4
[3] Bayen, T.; Henrion, D., Semidefinite programming for optimizing convex bodies under width constraints, Optim. Methods Softw., 27, 6, 1073-1099 (2012) · Zbl 1244.49054 · doi:10.1080/10556788.2010.547580
[4] Bogosel, B., Numerical shape optimization among convex sets, Appl. Math. Optim., 87, 1, 1 (2023) · Zbl 1501.49021 · doi:10.1007/s00245-022-09920-w
[5] Buttazzo, G.; Ferone, V.; Kawohl, B., Minimum problems over sets of concave functions and related questions, Math. Nachr., 173, 71-89 (1995) · Zbl 0835.49001 · doi:10.1002/mana.19951730106
[6] Buttazzo, G., Oudet, E., Stepanov, E.: Optimal transportation problems with free Dirichlet regions. In: Variational Methods for Discontinuous Structures. Progress in Nonlinear Differential Equations and their Applications, vol. 51, pp. 41-65. Birkhäuser, Basel (2002) · Zbl 1055.49029
[7] Buttazzo, G.; Stepanov, E., Optimal transportation networks as free Dirichlet regions for the Monge-Kantorovich problem, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2, 4, 631-678 (2003) · Zbl 1127.49031
[8] Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in heat: a new approach to computing distance based on heat flow. ACM Trans. Graph. 32(5) (2013)
[9] Danskin, JM, The theory of Max-Min, with applications, SIAM J. Appl. Math., 14, 641-664 (1966) · Zbl 0144.43301 · doi:10.1137/0114053
[10] Fattah, Z., Ftouhi, I., Zuazua, E.: About some counterintuitive results in optimal sensor design (in preparation)
[11] Fayolle, P-A; Belyaev, AG, On variational and PDE-based methods for accurate distance function estimation, Comput. Math. Math. Phys., 59, 12, 2009-2016 (2019) · Zbl 1453.65042 · doi:10.1134/S0965542519120066
[12] Kalise, D.; Kunisch, K.; Sturm, K., Optimal actuator design based on shape calculus, Math. Models Methods Appl. Sci., 28, 13, 2667-2717 (2018) · Zbl 1411.49030 · doi:10.1142/S0218202518500586
[13] Kawohl, B., On a family of torsional creep problems, J. Reine Angew. Math., 410, 1-22 (1990) · Zbl 0701.35015
[14] Lalithambigai, S.; Paul, T.; Shunmugaraj, P.; Thota, V., Chebyshev centers and some geometric properties of Banach spaces, J. Math. Anal. Appl., 449, 1, 926-938 (2017) · Zbl 1367.46015 · doi:10.1016/j.jmaa.2016.12.026
[15] Lemenant, A.: A Presentation of the Average Distance Minimizing Problem. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), vol. 390 (Teoriya Predstavleniĭ, Dinamicheskie Sistemy, Kombinatornye Metody. XX), pp. 117-146, 308 (2011)
[16] Lemenant, A.; Mainini, E., On convex sets that minimize the average distance, ESAIM Control Optim. Calc. Var., 18, 4, 1049-1072 (2012) · Zbl 1259.49065 · doi:10.1051/cocv/2011190
[17] Mach, J., Continuity properties of Chebyshev centers, J. Approx. Theory, 29, 3, 223-230 (1980) · Zbl 0467.41015 · doi:10.1016/0021-9045(80)90127-6
[18] Pai, DV; Nowroji, PT, On restricted centers of sets, J. Approx. Theory, 66, 2, 170-189 (1991) · Zbl 0738.41022 · doi:10.1016/0021-9045(91)90119-U
[19] Privat, Y.; Trélat, E.; Zuazua, E., Optimal location of controllers for the one-dimensional wave equation, Ann. Inst. Henri Poincaré Anal. Non Linéaire, 30, 6, 1097-1126 (2013) · Zbl 1296.49004 · doi:10.1016/j.anihpc.2012.11.005
[20] Privat, Y.; Trélat, E.; Zuazua, E., Optimal shape and location of sensors for parabolic equations with random initial data, Arch. Ration. Mech. Anal., 216, 3, 921-981 (2015) · Zbl 1319.35272 · doi:10.1007/s00205-014-0823-0
[21] Privat, Y.; Trélat, E.; Zuazua, E., Actuator design for parabolic distributed parameter systems with the moment method, SIAM J. Control Optim., 55, 2, 1128-1152 (2017) · Zbl 1361.49020 · doi:10.1137/16M1058418
[22] Ručevskis, S., Rogala, T., Katunin, A.: Optimal sensor placement for modal-based health monitoring of a composite structure. Sensors 22(10) (2022)
[23] Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory, 2nd expanded edn. Cambridge University Press, Cambridge (2013) · Zbl 0798.52001
[24] Semaan, R., Optimal sensor placement using machine learning, Comput. Fluids, 159, 167-176 (2017) · Zbl 1390.76808 · doi:10.1016/j.compfluid.2017.10.002
[25] Steinerberger, S.: Varadhan asymptotics for the heat kernel on finite graphs (2018)
[26] Uyeh, DD; Bassey, BI; Mallipeddi, R.; Asem-Hiablie, S.; Amaizu, M.; Woo, S.; Ha, Y.; Park, T., A reinforcement learning approach for optimal placement of sensors in protected cultivation systems, IEEE Access, 9, 100781-100800 (2021) · doi:10.1109/ACCESS.2021.3096828
[27] Varadhan, SRS, On the behavior of the fundamental solution of the heat equation with variable coefficients, Commun. Pure Appl. Math., 20, 431-455 (1967) · Zbl 0155.16503 · doi:10.1002/cpa.3160200210
[28] Zheng, Z., Ma, H., Yan, W., Liu, H., Yang, Z.: Training data selection and optimal sensor placement for deep-learning-based sparse inertial sensor human posture reconstruction. Entropy 23(5) (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.