×

Efficient stability-preserving numerical methods for nonlinear coercive problems in vector space. (English) Zbl 1529.65044

Summary: Strong stability (or monotonicity)-preserving time discretization schemes preserve the stability properties of the exact solution and have proved very useful in scientific and engineering computation, especially in solving hyperbolic partial differential equations. The main aim of this work is to further extend this to exponential stability-preserving numerical methods for a general coercive system whose solution is exponentially growing or decaying and the rate of growth or decay can be quantified by a \((\omega,\tau^*)\) function in general vector space with a convex functional. Under the same stepsize condition as for strong stability, sharper exponential stability results are derived for explicit and diagonally implicit Runge-Kutta methods and variable coefficients linear multistep methods for nonlinear problems. The new developments in this paper also include their applications to various linear and nonlinear evolution problems.

MSC:

65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L03 Numerical methods for functional-differential equations
65L70 Error bounds for numerical methods for ordinary differential equations
65L20 Stability and convergence of numerical methods for ordinary differential equations
65N06 Finite difference methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs

Software:

RODAS
Full Text: DOI

References:

[1] Barbu, V., Nonlinear Semigroups and Differetnial Equations in Banach Space, Noordhoff International Publisheing, Leyden, 1976. · Zbl 0328.47035
[2] Barbu, V., Nonlinear Differential Equations of Monotone Types in Banach Space, Springer, New York, 2010. · Zbl 1197.35002
[3] Burrage, K. and Butcher, J. C., Stability creiteria for implicit Runge-Kutta methods, SIAM J. Numer. Anal., 16 (1979), pp. 46-57, doi:10.1137/0716004. · Zbl 0396.65043
[4] Burrage, K. and Butcher, J. C., Nonlinear stability of a general class of differential equation methods, BIT, 20 (1979), pp. 185-203. · Zbl 0431.65051
[5] Butcher, J. C., Numerical Methods for Ordinary Differential Equations, 3rd ed., John Wiley & Sons, Chichester2016. · Zbl 1354.65004
[6] Crandall, M. G. and Pazy, A., Nonlinear evolution equations in Banach spaces, Israel J. Math., 11 (1972), pp. 57-94. · Zbl 0249.34049
[7] Crandall, M. G., Evolutionary equations: An introduction to evolution governed by accretive operator, in Dynamical Systems, Cesari, L., Hale, J. K., and LaSalle, J. P., eds., Academic Press, 1976, Vol. 1, Academic Press, New York, pp. 131-165. · Zbl 0339.35049
[8] Crandall, M. G., Book reviews: Nonlinear semigroups and differential equations in Banach spaces, Bull. Amer. Math. Soc., 84 (1978), pp. 632-637.
[9] Crandall, M. G., Nonlinear semigroups and evolution governed by accretive operators, Nonlinear Functional Analysis and its Applications, Part 1, , AMS, Providence, RI, 1986, pp. 305-337. · Zbl 0637.47039
[10] Dahlquist, G., Stability and Error Bounds in the Numerical Integration of Ordinary Differential Equations, Kungl. Tekn. Högsk. Handl.Stockholm, 130 (1959). · Zbl 0085.33401
[11] Dahlquist, G., Error analysis for a class of methods for stiff nonlinear initial value problems, in Numerical Analysis, Springer, Berlin, Heidelberg, pp. 60-74.
[12] Dahlquist, G. and Jeltsch, R., Generalized Disks of Contractivity for Explicit and Implicit Runge-Kutta Methods, Department of Numerical Analysis and Computing Sciences, the Royal Institute of Technology, S-100 44 Stockholm 70, SwedenTech. report TRITA-NA-7906, Institut för Numerisk Analysis, KTH Stockholm, Sweden.
[13] Dekker, K. and Verwer, J. G., Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations, CWI Monographs, Amsterdam, 1984. · Zbl 0571.65057
[14] Ferracina, L. and Spijker, M. N., Stepsize restrictions for the total-variation-diminishing property in general Runge-Kutta methods, SIAM J. Numer. Anal., 42 (2004), pp. 1073-1093, doi:10.1137/S0036142902415584. · Zbl 1080.65087
[15] Ferracina, L. and Spijker, M. N., An extension and analysis of the Shu-Osher representation of Runge-Kutta methods, Math. Comput., 74 (2005), pp. 201-219. · Zbl 1058.65098
[16] García-Celayeta, B., Higueras, I., and Roldán, T., Contracitvity/monotonicity for additive Runge-Kutta methods: Inner product norm, Appl. Numer. Math., 56 (2006), pp. 862-878. · Zbl 1100.65064
[17] Gottlieb, S. and Shu, C. W., Total variation diminishing Runge-Kutta schemes, Math. Comp., 67 (1998), pp. 73-85. · Zbl 0897.65058
[18] Gottlieb, S., Shu, C. W., and Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev., 43 (2001), pp. 89-112, doi:10.1137/S003614450036757X. · Zbl 0967.65098
[19] Gottlieb, S., On high order strong stability preserving Runge-Kutta and multi step time discretizations, J. Sci. Comput., 25 (2005), pp. 105-128. · Zbl 1203.65166
[20] Gottlieb, S., Ketcheson, D., and Shu, C. W., Strong Stability-preserving Runge-Kutta and Multistep Time Discretizations, World Scientific, Singapore, 2011. · Zbl 1241.65064
[21] Gottlieb, S., Grant, Z. J., Hu, J. W., and Shu, R. W., High Order Positivity Preserving and Asymptotic Preserving Multi-derivative Methods, https://arxiv.org/abs/2102.11939.
[22] Gottlieb, S., Grant, Z. J., Hu, J. W., and Shu, R. W., High order strong stability preserving multiderivative implicit and IMEX Runge-Kutta methods with asymptotic preserving properties, SIAM J. Numer. Anal., 60 (2022), pp. 423-449, doi:10.1137/21M1403175. · Zbl 1522.65120
[23] Van de, J. A. Griend and Kraaijevanger, J. F. B. M., Absolute monotonicity of rational functions occurring in the numerical solution of initial value problems, Numer. Math., 49 (1986), pp. 413-424. · Zbl 0595.65085
[24] Hairer, E., Nørsett, S., and Wanner, G. (1993). Solving Ordinary Differential Equations, I: Nonstiff Problems, , Springer-Verlag, 1993. · Zbl 0789.65048
[25] Hairer, E. and Zennaro, M., On error growth functions of Runge-Kutta methods, Appl Numer. Math., 22 (1996), pp. 205-216. · Zbl 0871.65071
[26] Hairer, E. and Wanner, G., Solving Ordinary Differential Equations II. Stiff and Differential-algebraic Problems, 2nd ed., Springer-Verlag, Berlin, 1996. · Zbl 0859.65067
[27] Henry, D.Geometric Theory of Semilinear Parabolic Equations, , Springer-Verlag, Berlin, 1981. · Zbl 0456.35001
[28] Higueras, I., On strong stability preserving time discretization methods, J. Sci. Comput., 21 (2004), pp. 193-223. · Zbl 1074.65095
[29] Higueras, I., Monotonicity for Runge-Kutta methods: Inner product norms, J. Sci. Comput., 24 (2005), pp. 97-117. · Zbl 1078.65554
[30] Higueras, I., Representations of Runge-Kutta methods and strong stability preserving methods, SIAM J. Numer. Anal., 43 (2005), pp. 924-948, doi:10.1137/S0036142903427068. · Zbl 1097.65078
[31] Hundsdorfer, W. H., Ruuth, S. J., and Spiteri, R. J., Monotonicity-preserving linear multistep methods, SIAM J. Numer. Anal., 41 (2003), pp. 605-623, doi:10.1137/S0036142902406326. · Zbl 1050.65070
[32] Hundsdorfer, W. H. and Ruuth, S. J., On monotonicity and boundedness properties of linear multistep methods, Math. Comput., 75 (2006), pp. 655-672. · Zbl 1092.65059
[33] Hundsdorfer, W. H., Mozartova, A., and Spijker, M. N., Special boundedness probperties in numerical intial value problems, BIT, 51 (2011), pp. 909-936. · Zbl 1239.65045
[34] Hundsdorfer, W. H., Mozartova, A., and Spijker, M. N., Stepsize restrictions for boundedness and monotonicity of multistep methods, J. Sci. Comput., 50 (2012), pp. 265-286. · Zbl 1261.65084
[35] Jeltsch, R. and Nevanlinna, O., Stability of explicit time discretizations for solving initial value problems, Numer. Math., 37 (1981), pp. 61-69. · Zbl 0457.65054
[36] Kraaijevanger, J. F. B. M., Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems, Numer. Math., 48 (1986), pp. 303-322. · Zbl 0561.65055
[37] Kraaijevanger, J. F. B. M., Contractivity of Runge-Kutta methods, BIT, 31 (1991), pp. 482-528. · Zbl 0763.65059
[38] Krein, S. G. and Khazan, M. I., Differential equations in a Banach space, J. Soviet Math., 30 (1985), pp. 2154-2239. · Zbl 0611.34059
[39] Lenferink, H. W. J., Contractivity preserving explicit linear multistep methods, Numer Math., 55 (1989), pp. 213-223. · Zbl 0649.65043
[40] Levy, D. and Tadmor, E., From semidiscrete to fully discrete: Stability of Runge-Kutta schemes by the energy method, SIAM Rev., 40 (1998), pp. 40-73, doi:10.1137/S0036144597316255. · Zbl 0915.65093
[41] Li, S. F., Numerical Analysis for Stiff Ordinary and Functional Differential Equations, 2nd ed., Xiangtan University Press, Xiangtan, China, 2019.
[42] Martin, R. H., Nonlinear Operators and Differential Equations in Banach Spaces, John Wiley & Sons, New York, 1976. · Zbl 0333.47023
[43] Nevanlinna, O. and Liniger, W., Contractive methods for stiff differential equations, part II, BIT, 19 (1979), pp. 53-72. · Zbl 0408.65046
[44] Nochetto, R. H. and Savaré, G., Nonlinear evolution governed by accretive operators in Banach spaces: Error control and applications, Math. Models Methods Appl. Sci., 16 (2006), pp. 439-477. · Zbl 1098.65092
[45] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differetnial Equations, Springer-Verlag, New York, 1983. · Zbl 0516.47023
[46] Ranocha, H. and Öffner, P., \(L_2\) stability of explicit Runge-Kutta schemes, J. Sci. Comput., 75 (2018), pp. 1040-1056. · Zbl 1398.65188
[47] Ranocha, H., On strong stability of explicit Runge-Kutta methods for nonlinear semibounded operators, IMA J. Numer. Anal., 41 (2021), pp. 654-682, doi:10.1093/imanum/drz070. · Zbl 1464.65075
[48] Ruuth, S. J. and Hundsdorfer, W., High-order linear multistep methods with general monotonicity and boundedness properties, J. Comput. Phys., 209 (2005), pp. 226-248. · Zbl 1074.65085
[49] Ruuth, S. J., Global optimization of explicit strong-stability-preserving Runge-Kutta methods, Math. Comp., 75 (2006), pp. 183-207. · Zbl 1080.65088
[50] Sand, J., Circle contractive linear multistep methods, BIT, 26 (1986), pp. 114-122. · Zbl 0594.65045
[51] Sand, J. and Skelboe, S., Stability of backward Euler multirate methods and convergence of waveform relaxation, BIT, 32 (1992), pp. 350-366. · Zbl 0760.65086
[52] Showalter, R. E., Monotone operators in Banach space and nonlinear partial differential equations, , AMS, Providence, RI, 1996.
[53] Shu, C.-W., Total-variation-diminishing time discretizaions, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 1073-1084, doi:10.1137/0909073. · Zbl 0662.65081
[54] Shu, C.-W. and Osher, S., Efficient implementation of essentially nonoscillatory shock-caapturing schemes, J. Comput. Phys., 77 (1988), pp. 439-471. · Zbl 0653.65072
[55] Shu, C.-W., A survey of strong stability preserving high order time discretization, in Collected Lectures on the Preservation of Stability under Discretization, Estep, D. and Tavener, S., eds, SIAM, Philadelphia, pp. 51-65. · Zbl 1494.65063
[56] Söderlind, G., The logarithmic norm, History and modern theory, BIT, 46 (2006), pp. 631-652. · Zbl 1102.65088
[57] Spijker, M. N., Contractivity in the numerical solution of initial value problems, Numer. Math., 42 (1983), pp. 271-290. · Zbl 0504.65030
[58] Spijker, M. N., On the relation between stability and contractivity, BIT, 24 (1984), pp. 656-666. · Zbl 0557.65044
[59] Spijker, M. N., Stepsize restrictions for stability of one-step methods in the numerical solution of initial value problems, Math. Comp., 45 (1985), pp. 377-392. · Zbl 0579.65092
[60] Spijker, M. N., Stepsize conditions for general monotonicity in numerical initial value problems, SIAM J. Numer. Anal., 45 (2007), pp. 1226-1245, doi:10.1137/060661739. · Zbl 1144.65055
[61] Spijker, M. N., The existence of stepsize-coefficients for boundedness of linear multistep methods, Appl Numer. Math., 63 (2013), pp. 45-57. · Zbl 1255.65136
[62] Spijker, M. N., Stability and boundedness in the numerical solution of initial value problems, Math. Comput., 86 (2017), pp. 2777-2798. · Zbl 1368.65122
[63] Spiteri, R. J. and Ruuth, S. J., A new class of optimal high-order strong-stability-preserving time discretization methods, SIAM J. Numer. Anal., 40 (2002), pp. 469-491, doi:10.1137/S0036142901389025. · Zbl 1020.65064
[64] Sun, Z. and Shu, C.-W., Stability of the fourth order Runge-Kutta method for time-dependent partial differential equations, Ann. Math. Sci. Appl., 2 (2017), pp. 255-284. · Zbl 1381.65079
[65] Sun, Z. and Shu, C.-W., Strong stability of explicit Runge-Kutta time discretization, SIAM J. Numer. Anal., 57 (2019), pp. 1158-1182, doi:10.1137/18M122892X. · Zbl 1422.65224
[66] Takahashi, T., Semigroups of nonlinear operators and invariant sets, Hiroshima Math. J., 10 (1980), pp. 55-67. · Zbl 0434.47053
[67] Tadmor, E., From semidiscrete to fully discrete: Stability of Runge-Kutta schemes by the energy method II, in Collected lectrues on the preservation of stability under discretization, Estep, D. and Tavener, S., eds., SIAM, Philadelphia, 2002, pp. 25-49. · Zbl 1494.65079
[68] Vanselow, R., Nonlinear stability behaviour of linear multistep methods, BIT, 23 (1983), pp. 388-396. · Zbl 0516.65061
[69] Wang, W. S., Wen, L. P., and Li, S. F., Nonlinear stability of explicit and diagonally implicit Runge-Kutta methods for neutral delay differential equations in banach space, Appl. Math. Comput., 199 (2008), pp. 787-803. · Zbl 1221.65184
[70] Wang, W. S., Wen, L. P., and Li, S. F., Stability of linear multistep methods for nonlinear neutral delay differential equations in banach space, J. Comput. Appl. Math., 233 (2010), pp. 2423-2437. · Zbl 1202.65103
[71] Wang, W. S. and Zhang, C. J., Preserving stability implicit Euler method for nonlinear Volterra and neutral functional differential equations in banach space, Numer. Math., 115 (2010), pp. 451-474. · Zbl 1193.65140
[72] Wang, W. S., Stability and convergence of stepsize-dependent linear multistep methods for nonlinear dissipative evolution equations in banach space, J. Comput. Math., accepted. · Zbl 07806675
[73] Wang, W. S., Stability and convergence of diagonally implicit Runge-Kutta methods for nonlinear dissipative vector fields in banach space, submitted.
[74] Zeldler, E.Nonlinear Functional Analysis and its Applications, II/B. Nonlinear Monotone Operators, 2nd ed., Springer-Verlag, New York, 1990. · Zbl 0684.47029
[75] Zhang, C. J. and Liao, X. X., D-convergence and stability of a class of linear multistep methods for nonlinear DDEs, J. Comput. Math., 18 (2000), pp. 199-206. · Zbl 0956.65067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.