×

On some simple steady forming process of viscoplastic solids. (English) Zbl 0584.73042

Steady drawing and extrusion processes of conventional viscoplastic materials, through wedge-shaped and conical dies, are analyzed. The basic material model assumes that the Eulerian strain rate is the sum of a plastic part and a viscous part. The investigation is restricted to relatively long and tapered dies with small wall friction. Within these limitations it is permissible to treat the flow patterns as being nearly radial. The problem is thus reduced to a single nonlinear differential equation. A few exact solutions are obtained and a further analysis is given for purely viscous solids. For the latter case we demonstrate the existence of optimum die angles where the required drawing tension attains a minimum.

MSC:

74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74C20 Large-strain, rate-dependent theories of plasticity
Full Text: DOI

References:

[1] Durban, D., Budiansky, B.: Plane strain radial flow of plastic materials. J. Mech. Phys. Solids26, 303-324 (1979). · Zbl 0395.73030 · doi:10.1016/0022-5096(78)90002-9
[2] Durban, D.: Axially symmetric radial flow of rigid/linear-hardening materials. J. Appl. Mech.46, 322-328 (1979). · Zbl 0417.73051 · doi:10.1115/1.3424549
[3] Durban, D.: Drawing of tubes. J. Appl. Mech.47, 736-740 (1980). · Zbl 0456.73016 · doi:10.1115/1.3153783
[4] Durban, D.: Radial flow simulation of drawing and extrusion of rigid/hardening materials. Int. J. Mech. Sci.25, 27-39 (1983). · Zbl 0501.73026 · doi:10.1016/0020-7403(83)90084-X
[5] Durban, D.: Drawing and extrusion of composits sheets, wires and tubes. Int. J. Solids Structures20, 649-666 (1984). · Zbl 0543.73051 · doi:10.1016/0020-7683(84)90022-2
[6] Durban, D.: Rate effects in steady forming processes of plastic materials. Int. J. Mech. Sci.26, 293-304 (1984). · Zbl 0538.73052 · doi:10.1016/0020-7403(84)90049-3
[7] Devries, G., Craig, D. B., Haddow, J. B.: Pseudo-plastic converging flow. Int. J. Mech. Sci.13, 762-772 (1971). · Zbl 0224.76009 · doi:10.1016/0020-7403(71)90045-2
[8] Rosenhead, L.: The steady two-dimensional radial flow of viscous fluid between two inclined plane walls. Proc. Roy. Soc.A175, 436-467 (1940). · JFM 66.1385.02 · doi:10.1098/rspa.1940.0068
[9] Nadai, A.: ?ber die Glut- und Verzweigungsfl?chen einiger Gleichgewichtszust?nde bildsamer Massen und die Nachspannungen bleibend verzerrter K?rper. Z. Phys.30, 106-138 (1924). · JFM 51.0649.05 · doi:10.1007/BF01331828
[10] Hill, R.: The mathematical theory of plasticity. Oxford: 1950. · Zbl 0041.10802
[11] Bond, W. N.: Viscous flow through wide-angled cones. Philosophical Magazine and Journal of Science, Sixth Series50, 1058-1066 (1925). · doi:10.1080/14786442508628550
[12] Shield, R. T.: Plastic flow in a converging conical channel. J. Mech. Phys. Solids3, 246-258 (1955). · doi:10.1016/0022-5096(55)90035-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.