×

Parallelizability in Banach spaces: Applications of negligibility theory. (English) Zbl 0699.54018

Using the negligibility theory of infinite-dimensional topology, the author modifies the classical Beputov example to give a dynamical system \(\rho\) on an infinite-dimensional Banach space E for which the restriction of \(\rho\) to \(E\setminus \{0_ E\}\) is dispersive but not parallelizable. This example shows that the infinite-dimensional analogue of the famous Nemyckii-Stepanov theorem (which states that a dynamical system \(\pi\) on a finite-dimensional normed space X or more generally, on a locally compact metric space X is parallelizable if and only if it is dispersive) fails. Also is given another example of a dynamical system \(\eta\) on \(E\times F\), where E, F are Banach spaces with E infinite- dimensional, showing that all aspects of the infinite-dimensional counterpart of Coleman’s conjecture (which states that a suitable topological notion of hyperbolicity for an equilibrium point \(x_ 0\) of a dynamical system \(\pi\) in \({\mathbb{R}}^{n+m}\) should guarantee that near \(x_ 0\), \(\pi\) is conjugate to a dynamical system induced by a linear hyperbolic vector field) are false.
Reviewer: T.Panchapagesan

MSC:

54H20 Topological dynamics (MSC2010)
46B99 Normed linear spaces and Banach spaces; Banach lattices
37-XX Dynamical systems and ergodic theory
Full Text: DOI

References:

[1] R. D. Anderson and R. H. Bing, A complete elementary proof that Hilbert-space is homeomorphic to the countable infinite product of lines,Bull. Amer. Math. Soc.,74 (1968), 771–792. · Zbl 0189.12402 · doi:10.1090/S0002-9904-1968-12044-0
[2] J. Auslander and P. Seibert, Prolongations and stability in dynamical systems,Ann. Inst. Fourier,14 (1964), 237–268. · Zbl 0128.31303
[3] N. P. Bhatia and G. P. Szego,Dynamical Systems: Stability Theory and Applications, Springer (Berlin, 1967).
[4] R. H. Bing, The Cartesian product of a certain nonmanifold and a line isE 4,Ann. Math.,70 (1959), 399–412. · Zbl 0089.39501 · doi:10.2307/1970322
[5] W. C. Chewning, A dynamical system onE 4 neither isomorphic nor equivalent to a differential system,Bull. Amer. Math. Soc. 80 (1974), 150–153. · Zbl 0273.54029 · doi:10.1090/S0002-9904-1974-13396-3
[6] W. C. Chewning and R. S. Owen, Local sections of flows on manifolds,Proc. Amer. Math. Soc.,49 (1975), 71–77. · Zbl 0301.58017 · doi:10.1090/S0002-9939-1975-0362404-0
[7] C. Coleman, Hyperbolic stationary points, inReports of the Fifth International Congress on Nonlinear Oscillations, Vol. 2, 222–226, Izd. Inst. Mat. Akad. Nauk Ukrainen SSR (Kiev, 1970).
[8] W. H. Cutler, Negligible subsets for infinite-dimensional Fréchet manifolds,Proc. Amer. Math. Soc.,23 (1969), 668–675. · Zbl 0195.53603
[9] J. Egawa, A remark on the flow near a compact invariant set,Proc. Japan Acad.,49 (1973), 247–251. · Zbl 0273.34029 · doi:10.3792/pja/1195519370
[10] R. Engelking,General Topology, PWN (Warsaw, 1977).
[11] B. M. Garay, Metrization and Liapunov functions. IV,Coll Math. Soc. J. Bolyai 47. Diff. Eqi.: Qualitative theory (Szeged, 1984). · Zbl 0562.54060
[12] B. M. Garay and J. J. Schäffer, More on uniqueness without continuous dependence in infinite dimensions,J. Diff. Eq. (in print).
[13] S. K. Goel and D. A. Neumann, Completely unstable dynamical systems,Trans. Amer. Math. Soc.,291 (1985), 639–668. · Zbl 0578.58034 · doi:10.1090/S0002-9947-1985-0800256-3
[14] O. Hajek, Parallelizability revisited,Proc. Amer. Math. Soc. 27 (1971), 77–84. · Zbl 0208.52102 · doi:10.2307/2037265
[15] J. P. Henderson and J. J. Walsh, Examples of cell-like decompositions of the infinite-dimensional manifolds {\(\sigma\)} and {\(\Sigma\)},Topology Appl.,16 (1983), 143–155. · Zbl 0525.57011 · doi:10.1016/0166-8641(83)90014-7
[16] K. W. Kwun, Factors ofN-space,Mich. Math. J.,9 (1962), 207–211. · Zbl 0108.18301 · doi:10.1307/mmj/1028998718
[17] E. Luft, On contractible open topological manifolds,Invent. Math.,4 (1967), 192–201. · Zbl 0158.42301 · doi:10.1007/BF01425755
[18] L. Márkus, Parallel dynamical systems,Topology,8 (1969), 47–57. · Zbl 0176.20304 · doi:10.1016/0040-9383(69)90030-5
[19] R. C. McCann, Continuous flows with Hausdorff orbit spaces,Funkcial. Ekvac.,18 (1975), 195–206. · Zbl 0323.54036
[20] R. C. McCann, On the parallelizability of regions of asymptotic stability,Funkcial. Ekvac.,23 (1980), 357–360. · Zbl 0453.34042
[21] D. A. Neumann, Smoothing continuous flows,J. Diff. Eq.,24 (1977), 127–135. · doi:10.1016/0022-0396(77)90173-5
[22] D. A. Neumann, Topologically hyperbolic equilibria in dynamical systems,J. Diff. Eq.,37 (1980), 49–59. · doi:10.1016/0022-0396(80)90087-X
[23] J. Palis, On the local structure of hyperbolic points in Banach spaces,An. Acad. Brasil. Ci.,40 (1968), 263–266. · Zbl 0184.17803
[24] D. Pixton, More counterexamples to Coleman’s conjecture,Proc. Amer. Math. Soc.,82 (1981), 145–148. · Zbl 0468.58018
[25] T. Saito, On the structure of compact dynamical systems,Funkcional. Ekvac.,13 (1970), 147–170. · Zbl 0228.54043
[26] T. Ura and J. Egawa, Isomorphism and parallelizability in dynamical systems theory.Math. Systems Theory,7 (1973), 250–264. · Zbl 0275.34052 · doi:10.1007/BF01795943
[27] T. Ura and I. Kimura, Sur le courant exterieur a une region invariante. Theoreme de Bendixson,Comm. Math. Univ. Sanctii Pauli. 8 (1960), 23–39.
[28] R. B. Walker, Topological versus differentiable hyperbolicity: extending orbit conjugacies,J. Diff. Eq.,43 (1982), 451–473. · Zbl 0489.58024 · doi:10.1016/0022-0396(82)90086-9
[29] J. E. West, The diffeomorphic excision of closed local compacta from infinite-dimensional Hilbert manifolds,Comp. Math.,21 (1969), 271–291. · Zbl 0181.51303
[30] J. H. C. Whitehead, A certain open manifold whose groups is unity,Q. J. Math. 6 (1935), 268–279. · Zbl 0013.08103 · doi:10.1093/qmath/os-6.1.268
[31] F. W. Wilson, The structure of the level surfaces of a Liapunov function,J. Diff. Eq.,3 (1967), 323–329. · Zbl 0152.28701 · doi:10.1016/0022-0396(67)90035-6
[32] F. W. Wilson, A reformulation of Coleman’s conjecture concerning the local conjugacy of topologically hyperbolic singular points, inStructure of Attractors in Dynamical Systems, Springer (Berlin, 1978). · Zbl 0407.58032
[33] F. W. Wilson, A uniform continuity condition which is equivalent to Coleman’s conjecture,J. Diff. Eq.,36 (1980), 12–19. · Zbl 0463.58019 · doi:10.1016/0022-0396(80)90071-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.