×

Trajectory composition of Poisson time changes and Markov counting systems. (English) Zbl 1296.60202

Summary: Changing time of simple continuous-time Markov counting processes by independent unit-rate Poisson processes results in Markov counting processes for which we provide closed-form transition rates via composition of trajectories and with which we construct novel, simpler infinitesimally over-dispersed processes.

MSC:

60J27 Continuous-time Markov processes on discrete state spaces

References:

[1] Barndorff-Nielsen, O. E.; Shiryaev, A., Change of Time and Change of Measure (2010), World Scientific Publishing · Zbl 1234.60003
[2] Bharucha-Reid, A. T., Elements of the Theory of Markov Processes and their Applications (1960), McGraw-Hill · Zbl 0095.32803
[3] Billard, L.; Lacayo, H.; Langberg, N. A., A new look at the simple epidemic process, J. Appl. Probab., 16, 1, 198-202 (1979) · Zbl 0414.92022
[4] Billard, L.; Lacayo, H.; Langberg, N. A., Generalizations of the simple epidemic process, J. Appl. Probab., 17, 4, 1072-1078 (1980) · Zbl 0442.92022
[5] Brémaud, P., Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues (1999), Springer: Springer New York · Zbl 0949.60009
[6] Bretó, C., On infinitesimal dispersion of multivariate Markov counting systems, Statist. Probab. Lett., 82, 720-725 (2012) · Zbl 1244.60075
[7] Bretó, C., Time changes that result in multiple points in continuous-time Markov counting processes, Statist. Probab. Lett., 82, 2229-2234 (2012) · Zbl 1471.60116
[8] Bretó, C.; He, D.; Ionides, E.; King, A., Time series analysis via mechanistic models, Ann. Appl. Stat., 3, 319-348 (2009) · Zbl 1160.62080
[9] Bretó, C.; Ionides, E., Compound Markov counting processes and their applications to modeling infinitesimally over-dispersed systems, Stochastic Process. Appl., 121, 2571-2591 (2011) · Zbl 1279.60095
[10] Chou, S. T.; fan, L. T.; Argoti, A.; Vidal-Michel, R.; More, A., Stochastic modeling of thermal disinfection of bacteria according to the logistic law, Amer. Inst. Chem. Eng. J., 51, 9, 2615-2618 (2005)
[11] Daley, D.; Vere-Jones, D., An Introduction to the Theory of Point Processes. Vol. I: Elementary Theory and Methods (2003), Springer · Zbl 1026.60061
[12] Doig, A., A bibliography on the theory of queues, Biometrika, 44, 490-514 (1957) · Zbl 0078.32504
[13] Faddy, M. J.; Fenlon, J. S., Stochastic modelling of the invasion process of nematodes in fly larvae, J. Appl. Stat., 48, 31-37 (1999)
[14] Fan, L. T.; Argoti, A., Stochastic modeling for the formation of activated carbons: nonlinear approach, Ind. Eng. Chem. Res., 50, 8836-8841 (2011)
[15] Hanson, F. B., (Applied Stochastic Processes and Control for Jump-Diffusions: Modeling, Analysis, and Computation. Applied Stochastic Processes and Control for Jump-Diffusions: Modeling, Analysis, and Computation, Advances in Design and Control (2007), Society for Industrial and Applied Mathematics) · Zbl 1145.60003
[16] Haseltine, E. L.; Rawlings, J. B., Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics, J. Chem. Phys., 117, 6959-6969 (2002)
[17] He, D.; Ionides, E.; King, A., Plug-and-play inference for disease dynamics: measles in large and small populations as a case study, J. R. Soc. Interface, 7, 271-283 (2009)
[18] Hougaard, P.; Lee, M.-L. T.; Whitmore, G. A., Analysis of overdispersed count data by mixtures of Poisson variables and Poisson processes, Biometrics, 53, 4, 1225-1238 (1997) · Zbl 0911.62101
[19] Ionides, E. L.; Bretó, C.; King, A. A., Inference for nonlinear dynamical systems, Proc. Natl. Acad. Sci. USA, 103, 18438-18443 (2006)
[20] Jackson, J., How networks of queues came about, Oper. Res., 50, 1, 112-113 (2002) · Zbl 1163.90392
[21] Jacquez, J. A., Compartmental Analysis in Biology and Medicine (1996), BioMedware: BioMedware Ann Arbor, MI · Zbl 0703.92001
[22] Karmershu, Sharma, P., Truncating the hierarchy of moment equations based on point distribution—applications to innovation diffusion, Math. Comput. Modelling, 45, 233-240 (2007) · Zbl 1171.60334
[23] Kermack, W. O.; McKendrick, A. G., A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. Ser. A, 115, 700-721 (1927) · JFM 53.0517.01
[24] Kozubowski, T. J.; Podgórski, K., Distributional properties of the negative binomial Lévy process, Probab. Math. Statist., 29, 43-71 (2009) · Zbl 1170.60021
[25] Kumar, A.; Nane, E.; Vellaisamy, P., Time-changed Poisson processes, Statist. Probab. Lett., 81, 1899-1910 (2011) · Zbl 1227.60063
[26] Lee, M.-L. T.; Whitmore, G. A., Stochastic processes directed by randomized time, J. Appl. Probab., 30, 2, 302-314 (1993) · Zbl 0777.60030
[27] Madan, D. B.; Carr, P.; Chang, E. C., The variance gamma process and option pricing, Eur. Finance Rev., 2, 79-105 (1998) · Zbl 0937.91052
[28] Marion, G.; Renshaw, E., Stochastic modelling of environmental variation for biological populations, Theor. Popul. Biol., 57, 197-217 (2000) · Zbl 0984.92039
[29] Matis, J. H.; Kiffe, T. R., Stochastic Population Models. A Compartmental Perpective (2000), Springer · Zbl 0943.92029
[30] Matis, J. H.; Wehrly, T. E., Models of compartmental systems, Biometrics, 35, 1, 199-220 (1979) · Zbl 0401.92003
[31] McCullagh, P.; Nelder, J. A., Generalized Linear Models (1989), Chapman and Hall: Chapman and Hall London · Zbl 0744.62098
[32] Nicolai, R.; Frenk, J.; Dekker, R., Modelling and optimizing imperfect maintenance of coatings on steel structures, Struct. Saf., 31, 3, 234-244 (2009)
[33] Sato, K., Lévy Processes and Infinitely Divisible Distributions (1999), Cambridge University Press · Zbl 0973.60001
[34] Shrestha, S.; King, A.; Rohani, P., Statistical inference for multi-pathogen systems, PLoS Comput. Biol., 7, 8, e1002135 (2011)
[35] Srivastava, R., Stochastic vs. deterministic modeling of intracellular viral kinetics, J. Theoret. Biol., 218, 309-321 (2002)
[36] Thorne, J. L.; Kishino, H.; Felsenstein, J., Inching toward reality: an improved likelihood model of sequence evolution, J. Mol. Evol., 34, 3-16 (1992)
[37] Varughese, M.; Fatti, L., Incorporating environmental stochasticity within a biological population model, Theor. Popul. Biol., 74, 115-129 (2008) · Zbl 1210.92060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.