×

The structure of fractional spaces generated by a two-dimensional difference operator in a half plane. (English) Zbl 1426.46016

Ukr. Math. J. 70, No. 8, 1176-1191 (2019); and Ukr. Mat. Zh. 70, No. 8, 1019-1032 (2018).
Summary: We consider a difference-operator approximation \(A_h^x\) of the differential operator \[A^x u(x) = -a_{1 1}(x) u_{x_1 x_1}(x) - a_{2 2}(x){u}_{x_2 x_2}(x) + \sigma u(x),\quad x=(x_1, x_2),\] defined in the region \(\mathbb{R}^+ \times \mathbb{R}\) with the boundary condition \[u(0, x_2) = 0, \quad x_2 \in \mathbb{R}.\] Here, the coefficients \(a_{ii}(x)\), \(i = 1, 2\), are continuously differentiable, satisfy the condition of uniform ellipticity \(a_{11}^2(x) + a_{22}^2(x) \ge \delta > 0\), and \(\sigma > 0\). We study the structure of the fractional spaces generated by the analyzed difference operator. The theorems on well-posedness of difference elliptic problems in a Hölder space are obtained as applications.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
39A14 Partial difference equations
Full Text: DOI

References:

[1] H. O. Fattorini, “Second order linear differential equations in Banach spaces,” in: North-Holland Mathematics Studies, North Holland (1985), 108. · Zbl 0564.34063
[2] P. Grisvard, “Elliptic problems in nonsmooth domains,” in: Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA (1985). · Zbl 0695.35060
[3] M. A. Krasnosel’skii, P. P. Zabreiko, E. I. Pustyl’nik, and P. E. Sobolevskii, Integral Operators in Spaces of Summable Functions, Noordhoff, Leiden (1976). · Zbl 0312.47041
[4] S. G. Krein, “Linear differential equations in a Banach space,” Transl. Math. Monogr., Amer. Math. Soc., Providence, RI (1968). · Zbl 0179.20701
[5] A. L. Skubachevskii, Elliptic Functional Differential Equations and Applications, Birkhäuser, Basel, etc. (1997). · Zbl 0946.35113
[6] V. V. Vlasov and N. A. Rautian, Spectral Analysis of Functional Differential Equations [in Russian], MAKS Press, Moscow (2016). · Zbl 1355.34113
[7] T. S. Kalmenov and D. Suragan, “Initial boundary-value problems for the wave equation,” Electron. J. Different. Equat., 48, 1-6 (2014). · Zbl 1288.35330
[8] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, etc. (1995) · Zbl 0816.35001
[9] M. Z. Solomyak, “Estimation of the norm of resolvent of an elliptic operator in the spaces <Emphasis Type=”Italic“>L <Emphasis Type=”Italic“>p,” Uspekhi Mat. Nauk, 15, No. 6, 141-148 (1960). · Zbl 0102.31501
[10] H. B. Stewart, “Generation of analytic semigroups by strongly elliptic operators under general boundary conditions,” Trans. Amer. Math. Soc., 259, 299-310 (1980). · Zbl 0451.35033 · doi:10.1090/S0002-9947-1980-0561838-5
[11] Kh. A. Alibekov and P. E. Sobolevskii, “Stability and convergence of difference schemes of a high order for parabolic differential equations,” Ukr. Math. Zh., 31, No. 6, 627-634 (1979); English translation:Ukr. Math. Zh., 31, No. 6, 483-489 (1979). · Zbl 0433.65045
[12] S. I. Danelich, Fractional Powers of Positive Difference Operators, Dissertation, Voronezh State Univ., Voronezh (1989).
[13] Yu. A. Simirnitskii and P. E. Sobolevskii, “Positivity of multidimensional difference operators in the <Emphasis Type=”Italic“>C-norm,” Uspekhi Mat. Nauk, 36, No. 4, 202-203 (1981).
[14] A. Ashyralyev and S. Akturk, “Positivity of a one-dimensional difference operator in the half-line and its applications,” Appl. Comput. Math., 14, No. 2, 204-220 (2015). · Zbl 1338.47037
[15] G. H. Hardy, J. E. Littlewood, and G. P´olya, Inequalities, Cambridge Univ. Press, Cambridge (1988). · Zbl 0634.26008
[16] A. Ashyralyev, “A survey of results in the theory of fractional spaces generated by positive operators,” TWMS J. Pure Appl. Math., 6, No. 2, 129-157 (2015). · Zbl 1369.47049
[17] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam-New York (1978). · Zbl 0387.46033
[18] A. Ashyralyev and F. S. Tetikoglu, “A note on fractional spaces generated by the positive operator with periodic conditions and applications,” Bound. Value Probl., 31 (2015). · Zbl 1334.34135
[19] A. Ashyralyev, N. Nalbant, and Y. Sozen, “Structure of fractional spaces generated by second order difference operators,” J. Franklin Inst., 351, No. 2, 713-731 (2014). · Zbl 1293.47035 · doi:10.1016/j.jfranklin.2013.07.009
[20] A. Ashyralyev and S. Akturk, “A note on positivity of two-dimensional differential operators,” Filomat, 31, No. 14, 4651-4663 (2017). · Zbl 1369.78845 · doi:10.2298/FIL1714651A
[21] A. Ashyralyev, S. Akturk, and Y. Sozen, “The structure of fractional spaces generated by two-dimensional elliptic differential operator and its applications,” Bound. Value Probl., 3 (2014). · Zbl 1305.35039
[22] A. Ashyralyev and P. E. Sobolevskii, New Difference Schemes for Partial Differential Equations, Birkhäuser, Basel, etc. (2004). · Zbl 1060.65055
[23] A. Ashyralyev, “On well-posedness of the nonlocal boundary-value problems for elliptic equations,” Numer. Funct. Anal. Optim., 24, 1-15 (2003). · Zbl 1055.35018 · doi:10.1081/NFA-120020240
[24] V. Shakhmurov and H. Musaev, “Maximal regular convolution-differential equations in weighted Besov spaces,” Appl. Comput. Math., 16, No. 2, 190-200 (2017). · Zbl 1474.34401
[25] S. Akturk and Y. Sozen, “The structure of fractional spaces generated by the difference operator on the half plane,” AIP Conf. Proc., 1479, 611-614 (2012). · doi:10.1063/1.4756206
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.