×

Quaternionic fractional wavelet transform. (English) Zbl 1402.42008

Summary: The novel fractional wavelet transform is extended to the space of square integrable quaternion valued functions on \(\mathbb {R}\) and its properties like linearity, Parseval’s identity and inversion formula are derived.

MSC:

42A38 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
46S10 Functional analysis over fields other than \(\mathbb{R}\) or \(\mathbb{C}\) or the quaternions; non-Archimedean functional analysis
44A15 Special integral transforms (Legendre, Hilbert, etc.)
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
Full Text: DOI

References:

[1] Akila, L.; Roopkumar, R., A natural convolution of quaternion valued functions and its applications, Applied Mathematics and Computation, 242, 633-642, (2014) · Zbl 1334.42010 · doi:10.1016/j.amc.2014.06.007
[2] Akila, L.; Roopkumar, R., Ridgelet transform on quaternion valued functions, International Journal of Wavelets, Multiresolution and Information Processing, 14, 18, (2016) · Zbl 1334.44004 · doi:10.1142/S0219691316500065
[3] Akila, L.; Roopkumar, R., Multidimensional quaternionic Gabor transforms, Advances in Applied Clifford Algebras, 25, 771-1002, (2016) · Zbl 1350.42015
[4] Akila, L.; Roopkumar, R., Quaternionic Stockwell transform, Integral Transforms and Special Functions, 27, 484-504, (2016) · Zbl 1341.42005 · doi:10.1080/10652469.2016.1155570
[5] Akila, L.; Roopkumar, R., Quaternionic curvelet transform, Optik, 131, 255-266, (2017) · doi:10.1016/j.ijleo.2016.11.011
[6] Almeida, LB, The fractional order Fourier transform and time-frequency representations, IEEE Transactions on Signal Processing, 42, 3084-3091, (1994) · doi:10.1109/78.330368
[7] Almeida, LB, Product and convolution theorems for the fractional Fourier transform, IEEE Signal Processing Letters, 4, 15-17, (1997) · doi:10.1109/97.551689
[8] Assefa, D.; Mansinha, L.; Tiampo, KF; Rasmussen, H.; Abdella, K., Local quaternion Fourier transform and color image texture analysis, Signal Processing, 90, 1825-1835, (2010) · Zbl 1197.94021 · doi:10.1016/j.sigpro.2009.11.031
[9] Guanlei, X.; Xiaotong, W.; Xiaogang, X., Fractional quaternion Fourier transform, Signal Processing, 88, 2511-2517, (2008) · Zbl 1151.94364 · doi:10.1016/j.sigpro.2008.04.012
[10] Hamilton, W.R. 1866. Elements of quaternions, Longmans. London: Green, & Company.
[11] He, J.; Yu, B., Continuous wavelet transforms on the space \(L^2(R, H, dx)\), Applied Mathematics Letters, 17, 111-121, (2004) · Zbl 1040.42031 · doi:10.1016/S0893-9659(04)90021-3
[12] Luchko, YF; Martínez, H.; Trujillo, JJ, Fractional Fourier transform and some of its applications, Fractional Calculus and Applied Analysis, 11, 457-470, (2008) · Zbl 1175.26016
[13] Mawardi, B.; Ashino, R.; Vaillancourt, R., Two-dimensional quaternion wavelet transform, Applied Mathematics and Computation, 218, 10-21, (2011) · Zbl 1232.65192 · doi:10.1016/j.amc.2011.05.030
[14] Mawardi, B.; Hitzer, E.; Ashino, R.; Vaillancourt, R., Windowed Fourier transform of two-dimensional quaternionic signals, Applied Mathematics and Computation, 216, 2366-2379, (2010) · Zbl 1196.42009 · doi:10.1016/j.amc.2010.03.082
[15] Mawardi, B.; Ashino, R.; Vaillancourt, R., Continuous quaternion Fourier and wavelet transforms, International Journal of Wavelets, Multiresolution and Information Processing, 12, 1460003, (2014) · Zbl 1301.42015 · doi:10.1142/S0219691314600030
[16] McBride, A.C. 1979. Fractional calculus and integral transforms of generalised functions. London: Pitman Publishing. · Zbl 0423.46029
[17] McBride, AC; Kerr, FH, On Namias’s fractional Fourier transforms, IMA Journal of Applied Mathematics, 39, 159-175, (1987) · Zbl 0644.44005 · doi:10.1093/imamat/39.2.159
[18] Mendlovic, D.; Zalevsky, Z.; Mas, D.; García, J.; Ferreira, C., Fractional wavelet transform, Applied Optics, 36, 4801-4806, (1997) · doi:10.1364/AO.36.004801
[19] Namias, V., The fractional order Fourier transform and its application to quantum mechanics, IMA Journal of Applied Mathematics, 25, 241-265, (1980) · Zbl 0434.42014 · doi:10.1093/imamat/25.3.241
[20] Roopkumar, R., Quaternionic one-dimensional fractional Fourier transform, Optik, 127, 11657-11661, (2016) · doi:10.1016/j.ijleo.2016.09.069
[21] Sangwine, SJ, Fourier transforms of colour images using quaternion or hypercomplex numbers, Electronics Letters, 32, 1979-1980, (1996) · doi:10.1049/el:19961331
[22] Sangwine, SJ, Colour image edge detector based on quaternion convolution, Electronics Letters, 34, 969-971, (1998) · doi:10.1049/el:19980697
[23] Shi, J.; Zhang, N.; Liu, X., A novel fractional wavelet transform and its applications, Science China Information Sciences, 55, 1270-1279, (2012) · Zbl 1245.94047 · doi:10.1007/s11432-011-4320-x
[24] Soulard, R.; Carré, P., Quaternionic wavelets for texture classification, Pattern Recognition Letters, 32, 1669-1678, (2011) · doi:10.1016/j.patrec.2011.06.028
[25] Subakan, ON; Vemuri, BC, A quaternion framework for color image smoothing and segmentation, International Journal of Computer Vision, 91, 233-250, (2011) · Zbl 1235.68315 · doi:10.1007/s11263-010-0388-9
[26] Tao, R.; li, Y-L; Wang, Y., Short-time fractional Fourier transform and its applications, IEEE Transactions on Signal Processing, 58, 2568-2580, (2010) · Zbl 1392.94484 · doi:10.1109/TSP.2009.2028095
[27] Tobar, FA; Mandic, DP, Quaternion reproducing kernel Hilbert spaces: existence and uniqueness conditions, IEEE Transactions on Information Theory, 60, 5736-5749, (2014) · Zbl 1360.62194 · doi:10.1109/TIT.2014.2333734
[28] Zayed, AI, A convolution and product theorem for the fractional Fourier transform, IEEE Signal Processing Letters, 5, 101-103, (1998) · doi:10.1109/97.664179
[29] Zayed, AI, Fractional fourier transforms of generalized functions, Integral Transforms and Special Functions, 7, 299-312, (1998) · Zbl 0941.46021 · doi:10.1080/10652469808819206
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.