×

Threshold of a stochastic SIQS epidemic model with isolation. (English) Zbl 1504.37097

Summary: The aim of this paper is to give sufficient conditions, very close to the necessary one, to classify the stochastic permanence of SIQS epidemic model with isolation via a threshold value \(\widehat{R}\). Precisely, we show that if \(\widehat{R}<1\) then the stochastic SIQS system goes to the disease free case in sense the density of infected \(I_z(t)\) and quarantined \(Q_z(t)\) classes extincts to 0 at exponential rate and the density of susceptible class \(S_z(t)\) converges almost surely at exponential rate to the solution of boundary equation. In the case \(\widehat{R}>1\), the model is permanent. We show the existence of a unique invariant probability measure and prove the convergence in total variation norm of transition probability to this invariant measure. Some numerical examples are also provided to illustrate our findings.

MSC:

37N25 Dynamical systems in biology
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
92D25 Population dynamics (general)
92D30 Epidemiology
Full Text: DOI

References:

[1] V. Capasso, Mathematical Structures of Epidemic Systems, Lecture Notes in Biomathematics, 97. Springer-Verlag, Berlin, 1993. · Zbl 0798.92024
[2] V. Capasso; G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 42, 43-61 (1978) · Zbl 0398.92026 · doi:10.1016/0025-5564(78)90006-8
[3] Y. Chen; B. Wen; Z. Teng, The global dynamics for a stochastic SIS epidemic model with isolation, Phys. A, 492, 1604-1624 (2018) · Zbl 1514.92117 · doi:10.1016/j.physa.2017.11.085
[4] N. H. Du; N. T. Dieu, Long-time behavior of an SIR model with perturbed disease transmission coefficient, Discrete Contin. Dyn. Syst. Ser. B, 21, 3429-3440 (2016) · Zbl 1355.34077 · doi:10.3934/dcdsb.2016105
[5] N. T. Dieu; D. H. Nguyen; N. H. Du; G. Yin, Classification of asymptotic behavior in a stochastic SIR model, SIAM J. Appl. Dyn. Syst., 15, 1062-1084 (2016) · Zbl 1343.34109 · doi:10.1137/15M1043315
[6] A. Gray; D. Greenhalgh; L. Hu; X. Mao; J. Pan, A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71, 876-902 (2011) · Zbl 1263.34068 · doi:10.1137/10081856X
[7] A. Hening; D. H. Nguyen, Coexistence and extinction for stochastic Kolmogorov systems, Ann. Appl. Probab., 28, 1893-1942 (2018) · Zbl 1410.60094 · doi:10.1214/17-AAP1347
[8] H. W. Hethcote; D. W. Tudor, Integral equation models for endemic infectious diseases, J. Math. Biol., 9, 37-47 (1980) · Zbl 0433.92026 · doi:10.1007/BF00276034
[9] H. Herbert; M. Zhien; L. Shengbing, Effects of quarantine in six endemic models for infectious diseases, Math. Biosci., 180, 141-160 (2002) · Zbl 1019.92030 · doi:10.1016/S0025-5564(02)00111-6
[10] M. Iannelli; F. A. Milner; A. Pugliese, Analytical and numerical results for the age-structured S-I-S epidemic model with mixed inter-intracohort transmission, SIAM J. Math. Anal., 23, 662-688 (1992) · Zbl 0776.35032 · doi:10.1137/0523034
[11] K. Ichihara and H. Kunita, A classification of the second order degenerate elliptic operators and its probabilistic characterization, Z. Wahrsch. Verw. Gebiete, 30 (1974), 235-254, Corrections in 39 (1977), 81-84. · Zbl 0326.60097
[12] D. Q. Jiang; J. J. Yu; C. Y. Ji; N. Z. Shi, Asymptotic behavior of global positive solution to a stochastic SIR model, Math. Comput. Modell., 54, 221-232 (2011) · Zbl 1225.60114 · doi:10.1016/j.mcm.2011.02.004
[13] W. O. Kermack; A. G. McKendrick, A contributions to the mathematical theory of epidemics, (part I), Proc. R. Soc. Lond. Ser. A, 115, 700-721 (1927) · JFM 53.0517.01 · doi:10.1098/rspa.1927.0118
[14] W. O. Kermack; A. G. McKendrick, Contributions to the mathematical theory of epidemics, (part II), Proc. Roy. Sot. Ser. A, 138, 55-83 (1932) · JFM 59.1190.03 · doi:10.1098/rspa.1932.0171
[15] R. Z. Khas’minskii, Ergodic properties of recurrent diffusion processes and stabilization of the Cauchy problem for parabolic equations, Theory Probab. Appl., 5, 179-196 (1960) · Zbl 0106.12001 · doi:10.1137/1105016
[16] W. Kliemann, Recurrence and invariant measures for degenerate diffusions, Ann. Probab., 15, 690-707 (1987) · Zbl 0625.60091 · doi:10.1214/aop/1176992166
[17] D. H. Nguyen; G. Yin, Modeling and analysis of switching diffusion systems: Past-dependent switching with a countable state space, SIAM J. Control Optim., 54, 2450-2477 (2016) · Zbl 1391.93199 · doi:10.1137/16M1059357
[18] D. H. Nguyen; G. Yin; C. Zhu, Long-term analysis of a stochastic SIRS model with general incidence rates, SIAM J. Appl. Math., 80, 814-838 (2020) · Zbl 1437.34061 · doi:10.1137/19M1246973
[19] M. Nuno; Z. Feng; M. Martcheva; C. Castillo-Chavez, Dynamics of two-strain influenza with isolation and partial cross-immunity, SIAM J. Appl. Math., 65, 964-982 (2005) · Zbl 1075.92041 · doi:10.1137/S003613990343882X
[20] A. V. Skorohod, Asymptotic Methods in the Theory of Stochastic Differential Equations, Providence, RI: Amer. Math. Soc., 1989. · Zbl 0695.60055
[21] L. Stettner, On the existence and uniqueness of invariant measure for continuous time Markov processes, LCDS Report, Brown University, Providence, (1986), 86-16, Available from: https://www.amazon.co.uk/existence-uniqueness-invariant-continuous-processes/dp/B000722C66
[22] T. D. Tuong; D. H. Nguyen; N. T. Dieu; T. Ky, Extinction and permanence in a stochastic SIRS model in regime-switching with general incidence rate, Nonlinear Anal. Hybrid Syst., 34, 121-130 (2019) · Zbl 1434.92035 · doi:10.1016/j.nahs.2019.05.008
[23] F. J. S. Wang, Asymptotic behavior of some deterministic epidemic models, SIAM J. Math. Anal., 9, 529-534 (1978) · Zbl 0417.92020 · doi:10.1137/0509034
[24] X. Zhang; H. Huo; H. Xiang; X. Meng, Dynamics of the deterministic and stochastic SIQS epidemic model with non-linear incidence, Appl. Math. Comput., 243, 546-558 (2014) · Zbl 1335.92107 · doi:10.1016/j.amc.2014.05.136
[25] X. Zhang; H. Huo; H. Xiang; Q. Shi; D. Li, The threshold of a stochastic SIQS epidemic model, Phys. A, 482, 362-374 (2017) · Zbl 1495.92109 · doi:10.1016/j.physa.2017.04.100
[26] X. B. Zhang; X. H. Zhang, The threshold of a deterministic and a stochastic SIQS epidemic model with varying total population size, Appl. Math. Model., 91, 749-767 (2021) · Zbl 1481.92178 · doi:10.1016/j.apm.2020.09.050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.