×

A spectral sequence for Bredon cohomology. (English) Zbl 1282.55012

Let \(G\) be a finite group and \(H\) be a subgroup of \(G\). Denote by \(\text{len}_GH\) the maximal number \(k\) such that there is a sequence of proper inclusions of \(H=H_0 < H_1 < \cdots < H_k=G\). Let \(\mathcal{O}^{\text{op}}_G\) be the opposite orbit category of \(G\). Then this has a filtration \(\mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_N=\mathcal{O}^{\text{op}}_G\) consisting of the full subcategories \(\mathcal{F}_k\) of \(\mathcal{O}^{\text{op}}_G\) whose objects are those \(G/H\) of \(\mathcal{O}^{\text{op}}_G\) such that \(\text{len}_GH \leq k\) where \(N=\text{len}_G\{e\}\).
For a \(G\)-\(CW\) complex \({\mathbb X}\) we define an \(\mathcal{O}^{op}_G\)-diagram \(\underline{X}\) in \(\mathcal{T}\) as a functor \(\mathcal{O}^{op}_G \to \mathcal{T}\) defined by sending \(G/H\) to \({\mathbb X}^H\) where \(\mathcal{T}\) denotes the category of topological spaces. Also by \(\underline{Y}=\underline{K}(\underline{M}, n)\) we denote the \(\mathcal{O}^{op}_G\)-diagram of Eilenberg-Mac Lane spaces in \(\mathcal{T}\) corresponding to \(\underline{M}\) an \(\mathcal{O}^{op}_G\)-diagram in abelian groups. For these two diagrams \(\underline{X}\), \(\underline{Y}\) we obtain a tower of simplicial sets \[ \cdots \to \text{Map}(\underline{X}|_{\mathcal{F}_k}, \underline{Y}|_{\mathcal{F}_k})\overset{p_k}{\to} {\text{Map}}(\underline{X}|_{\mathcal{F}_{k-1}}, \underline{Y}|_{\mathcal{F}_{k-1}}{)} \cdots \] which is induced by the inclusions \(\cdots \subset \mathcal{F}_{k-1} \subset \mathcal{F}_k \subset \cdots\). The authors prove that this tower becomes a tower of fibrations, and hence we have a spectral sequence such that \[ E^{k+t, t}_1\cong \pi_t (F_k(\underline{X}, \underline{Y})) \Rightarrow \pi_t(\text{Map}(\underline{X}, \underline{Y})) \cong {\mathbf H}^{n-t}_G({\mathbb X}; \underline{M}) \] where \(F_k(\underline{X}, \underline{Y})\) denotes the fiber of \(p_k\). The authors also show that this \(E_1\)-term can be written as a direct sum of the reduced local cohomology groups \(\tilde{H}^{n-t}_{W_L}({\mathbf E}W_L\times_{W_L}{\mathbb X}^L_L; M_L)\) where \({\mathbb X}^L_L={\mathbb X}^L/\bigcup_{K>L}{\mathbb X}^K\). This spectral sequence is the main result of this paper. But additionally, the authors construct one more spectral sequence in a similar way, which allows us to compute \({\mathbf H}^{*}_{W_L}({\mathbb X}^L; \hat{M}_L)\) similarly from the reduced local cohomology groups.

MSC:

55N91 Equivariant homology and cohomology in algebraic topology
55P91 Equivariant homotopy theory in algebraic topology
55N25 Homology with local coefficients, equivariant cohomology
55T99 Spectral sequences in algebraic topology

References:

[1] Blanc, D., Johnson, M.W., Turner, J.M.: Local-to-global spectral sequences for the cohomology of diagrams. J. Pure Appl. Algebra 213, 34-53 (2009) · Zbl 1159.18004 · doi:10.1016/j.jpaa.2008.05.011
[2] Bousfield, A.K., Kan, D.M.: Homotopy Limits, Completions, and Localizations, Lecture Notes in Math. 304. Springer, Berlin-New York (1972) · Zbl 0259.55004 · doi:10.1007/978-3-540-38117-4
[3] Bredon, G.E.: Equivariant Cohomology Theories Lecture Notes in Math. 34. Springer, Berlin-New York (1967) · Zbl 0162.27202
[4] Bröcker, T.: Singuläre Definition der äquivarieanten Bredon-Homologie. Manuscr. Math. 5, 91-102 (1971) · Zbl 0213.49902 · doi:10.1007/BF01397610
[5] Davis, J.F., Lück, W.: The p-chain spectral sequence. J. K-Theory 30, 71-104 (2003) · Zbl 1051.55009 · doi:10.1023/B:KTHE.0000015339.41953.04
[6] tom Dieck, T.: Transformation Groups. De Greuter, Berlin-New York (1987) · Zbl 0611.57002 · doi:10.1515/9783110858372
[7] Dwyer, W.G., Kan, D.M.: Singular functors and realization functors. Proc. Kon. Ned. Akad. Wet. 2, 147-153 (1984) · Zbl 0555.55019
[8] Dwyer, W.G., Kan, D.M.: Equivariant homotopy classification. J. Pure Appl. Algebra 35, 269-285 (1985) · Zbl 0567.55010 · doi:10.1016/0022-4049(85)90045-3
[9] Elmendorf, A.D.: Systems of fixed point sets. Trans. Am. Math. Soc. 277, 275-284 (1983) · Zbl 0521.57027 · doi:10.1090/S0002-9947-1983-0690052-0
[10] Gitler, S.: Cohomology operations with local coefficients. Am. J. Math. 85, 156-188 (1963) · Zbl 0131.38006 · doi:10.2307/2373208
[11] Goerss, P.G., Jardine, J.F.: Simplicial Homotopy Theory, Progress in Mathematics 179. Birkhäuser, Basel-Boston (1999) · Zbl 0949.55001 · doi:10.1007/978-3-0348-8707-6
[12] Illman, S.: Equivariant Singular Homology and Cohomology, I, Mem. Am. Math. Soc. 1 (No. 156), Amer. Math. Soc., Providence, RI (1975) · Zbl 0297.55003
[13] James, I.M., Segal, G.B.: On equivariant homotopy type. Topology 17, 267-272 (1978) · Zbl 0403.57007 · doi:10.1016/0040-9383(78)90030-7
[14] Jibladze, M.A., Pirashvili, T.I.: Cohomology of algebraic theories. J. Algebra 137(2), 253-296 (1991) · Zbl 0724.18005 · doi:10.1016/0021-8693(91)90093-N
[15] Mac Lane, S.: Categories for the Working Mathematician, Springer Grad. Texts Math. 5, Berlin-New York (1971) · Zbl 0232.18001
[16] Matumoto, T.: On \[G\] G-\[CW\] CW complexes and a theorem of J.H.C. Whitehead. J. Fac. Sci. Univ. Tokyo 18, 363-374 (1971) · Zbl 0232.57031
[17] Matumoto, T.: Equivariant cohomology theories on \[G\] G-\[CW\] CW complexes. Osaka J. Math. 10, 51-68 (1973) · Zbl 0272.55013
[18] May, J.P.: Equivariant homotopy and cohomology theory, Reg. Conf. Ser. Math. 91, Am. Math. Soc., Providence, RI (1996) · Zbl 0890.55001
[19] Moerdijk, I., Svensson, J.-A.: The equivariant Serre spectral sequence. Proc. Am. Math. Soc. 118, 263-267 (1993) · Zbl 0791.55004 · doi:10.1090/S0002-9939-1993-1123662-9
[20] Piacenza, R.J.: The homotopy theory of diagrams. In: May, J.P. (ed.), Equivariant Homotopy and Cohomology Theory, Reg. Conf. Ser. Math. 91, Am. Math. Soc., Providence, RI, pp. 47-56 (1996) · Zbl 0890.55001
[21] Quillen, D.G.: Homotopical Algebra, Lecture Notes in Math. 20. Springer, Berlin-New York (1963)
[22] Robinson, M.: Cohomology of Diagrams of Algebras. preprint ( arXiv:0802.3651) (2008)
[23] Steenrod, N.E.: Homology with local coefficients. Ann. Math. 44(2), 610-627 (1943) · Zbl 0061.40901 · doi:10.2307/1969099
[24] Willson, S.J.: Equivariant homology theories on \[G\] G-complexes. Trans. Am. Math. Soc. 212, 155-171 (1975) · Zbl 0308.55002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.