×

Integral operators, bispectrality and growth of Fourier algebras. (English) Zbl 1540.47069

Summary: In the mid 1980s it was conjectured that every bispectral meromorphic function \(\psi(x,y)\) gives rise to an integral operator \(K_{\psi}(x,y)\) which possesses a commuting differential operator. This has been verified by a direct computation for several families of functions \(\psi(x,y)\) where the commuting differential operator is of order \(\leq 6\). We prove a general version of this conjecture for all self-adjoint bispectral functions of rank 1 and all self-adjoint bispectral Darboux transformations of the rank 2 Bessel and Airy functions. The method is based on a theorem giving an exact estimate of the second- and first-order terms of the growth of the Fourier algebra of each such bispectral function. From it we obtain a sharp upper bound on the order of the commuting differential operator for the integral kernel \(K_{\psi}(x,y)\) leading to a fast algorithmic procedure for constructing the differential operator; unlike the previous examples its order is arbitrarily high. We prove that the above classes of bispectral functions are parametrized by infinite-dimensional Grassmannians which are the Lagrangian loci of the Wilson adelic Grassmannian and its analogs in rank 2.

MSC:

47G10 Integral operators
44A05 General integral transforms
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
33C80 Connections of hypergeometric functions with groups and algebras, and related topics
14H70 Relationships between algebraic curves and integrable systems

References:

[1] M. Adler and P. van Moerbeke, The spectrum of coupled random matrices, Ann. of Math. (2) 149 (1999), no. 3, 921-976. · Zbl 0936.15018
[2] M. Adler and P. van Moerbeke, Hermitian, symmetric and symplectic random ensembles: PDEs for the distribution of the spectrum, Ann. of Math. (2) 153 (2001), no. 1, 149-189. · Zbl 1033.82005
[3] M. Adler and P. van Moerbeke, PDEs for the Gaussian ensemble with external source and the Pearcey distribution, Comm. Pure Appl. Math. 60 (2007), no. 9, 1261-1292. · Zbl 1193.82012
[4] B. Bakalov, E. Horozov and M. Yakimov, General methods for constructing bispectral operators, Phys. Lett. A 222 (1996), no. 1-2, 59-66. · Zbl 0972.37545
[5] B. Bakalov, E. Horozov and M. Yakimov, Bispectral algebras of commuting ordinary differential operators, Comm. Math. Phys. 190 (1997), no. 2, 331-373. · Zbl 0912.34065
[6] B. Bakalov, E. Horozov and M. Yakimov, Highest weight modules over the W_{1+\infty} algebra and the bispectral problem, Duke Math. J. 93 (1998), no. 1, 41-72. · Zbl 0983.17015
[7] B. Bakalov and T. Milanov, \mathscr{W}-constraints for the total descendant potential of a simple singularity, Compos. Math. 149 (2013), no. 5, 840-888. · Zbl 1277.53094
[8] D. Ben-Zvi and T. Nevins, \mathscr{W}-symmetry of the adèlic Grassmannian, Comm. Math. Phys. 293 (2010), no. 1, 185-204. · Zbl 1225.17030
[9] Y. Berest and G. Wilson, Automorphisms and ideals of the Weyl algebra, Math. Ann. 318 (2000), no. 1, 127-147. · Zbl 0983.16021
[10] M. Bergvelt, M. Gekhtman and A. Kasman, Spin Calogero particles and bispectral solutions of the matrix KP hierarchy, Math. Phys. Anal. Geom. 12 (2009), no. 2, 181-200. · Zbl 1186.37072
[11] A. Borodin and P. Deift, Fredholm determinants, Jimbo-Miwa-Ueno τ-functions, and representation theory, Comm. Pure Appl. Math. 55 (2002), no. 9, 1160-1230. · Zbl 1033.34089
[12] A. Borodin and G. Olshanski, Point processes and the infinite symmetric group, Math. Res. Lett. 5 (1998), no. 6, 799-816. · Zbl 1044.20501
[13] A. Borodin and G. Olshanski, Distributions on partitions, point processes, and the hypergeometric kernel, Comm. Math. Phys. 211 (2000), no. 2, 335-358. · Zbl 0966.60049
[14] J. J. Duistermaat and F. A. Grünbaum, Differential equations in the spectral parameter, Comm. Math. Phys. 103 (1986), no. 2, 177-240. · Zbl 0625.34007
[15] E. Frenkel, V. Kac, A. Radul and W. Wang, \mathscr{W}_{1+\infty} and \mathscr{W}(\mathfrak{g}\mathfrak{l}_N) with central charge N, Comm. Math. Phys. 170 (1995), no. 2, 337-357. · Zbl 0838.17028
[16] F. A. Grünbaum, Some new explorations into the mystery of time and band limiting, Adv. Appl. Math. 13 (1992), no. 3, 328-349. · Zbl 0778.05084
[17] F. A. Grünbaum, Band-time-band limiting integral operators and commuting differential operators, Algebra i Analiz 8 (1996), no. 1, 122-126. · Zbl 0878.47031
[18] F. A. Grünbaum and L. Haine, Bispectral Darboux transformations: an extension of the Krall polynomials, Int. Math. Res. Not. IMRN 1997 (1997), no. 8, 359-392. · Zbl 1125.37321
[19] F. A. Grünbaum, I. Pacharoni and I. N. Zurrián, Bispectrality and time-band-limiting: Matrix valued polynomials, preprint (2018), https://arxiv.org/abs/1801.10261. · Zbl 1411.33008
[20] F. A. Grünbaum and M. Yakimov, The prolate spheroidal phenomenon as a consequence of bispectrality, Superintegrability in classical and quantum systems, CRM Proc. Lecture Notes 37, American Mathematical Society, Providence (2004), 301-312. · Zbl 1085.47056
[21] J. Harnad and A. R. Its, Integrable Fredholm operators and dual isomonodromic deformations, Comm. Math. Phys. 226 (2002), no. 3, 497-530. · Zbl 1008.34082
[22] J. Harnad, C. A. Tracy and H. Widom, Hamiltonian structure of equations appearing in random matrices, Low-dimensional topology and quantum field theory (Cambridge 1992), NATO Adv. Sci. Inst. Ser. B Phys. 315, Plenum, New York (1993), 231-245. · Zbl 0938.82510
[23] E. Horozov, Bispectral operators of prime order, Comm. Math. Phys. 231 (2002), no. 2, 287-308. · Zbl 1028.47035
[24] E. Horozov and T. Milanov, Fuchsian bispectral operators, Bull. Sci. Math. 126 (2002), no. 3, 161-192. · Zbl 1008.34073
[25] P. Iliev, Krall-Jacobi commutative algebras of partial differential operators, J. Math. Pures Appl. (9) 96 (2011), no. 5, 446-461. · Zbl 1237.13050
[26] P. Iliev, Bispectral extensions of the Askey-Wilson polynomials, J. Funct. Anal. 266 (2014), no. 4, 2294-2318. · Zbl 1294.33023
[27] A. Kasman and M. Rothstein, Bispectral Darboux transformations: the generalized Airy case, Phys. D 102 (1997), no. 3-4, 159-176. · Zbl 0890.58095
[28] M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992), no. 1, 1-23. · Zbl 0756.35081
[29] H. J. Landau and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty. II, Bell System Tech. J. 40 (1961), 65-84. · Zbl 0184.08602
[30] M. L. Mehta, Random matrices, 3rd ed., Pure Appl. Math. (Amsterdam) 142, Elsevier/Academic, Amsterdam 2004. · Zbl 1107.15019
[31] P. van Moerbeke, Integrable foundations of string theory, Lectures on integrable systems (Sophia-Antipolis 1991), World Scientific, River Edge (1994), 163-267.
[32] A. Okounkov and R. Pandharipande, Virasoro constraints for target curves, Invent. Math. 163 (2006), no. 1, 47-108. · Zbl 1140.14047
[33] J. Palmer, Deformation analysis of matrix models, Phys. D 78 (1994), no. 3-4, 166-185. · Zbl 0818.47049
[34] R. K. Perline, Discrete time-band limiting operators and commuting tridiagonal matrices, SIAM J. Algebr. Discrete Methods 8 (1987), no. 2, 192-195. · Zbl 0616.33010
[35] M. Perlstadt, A property of orthogonal polynomial families with polynomial duals, SIAM J. Math. Anal. 15 (1984), no. 5, 1043-1054. · Zbl 0551.42008
[36] D. Slepian, Prolate spheroidal wave functions, Fourier analysis and uncertainity. IV. Extensions to many dimensions; generalized prolate spheroidal functions, Bell System Tech. J. 43 (1964), 3009-3057. · Zbl 0184.08604
[37] D. Slepian and H. O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty. I, Bell System Tech. J. 40 (1961), 43-63. · Zbl 0184.08601
[38] C. A. Tracy and H. Widom, Level-spacing distributions and the Airy kernel, Phys. Lett. B 305 (1993), no. 1-2, 115-118.
[39] C. A. Tracy and H. Widom, Level spacing distributions and the Bessel kernel, Comm. Math. Phys. 161 (1994), no. 2, 289-309. · Zbl 0808.35145
[40] G. Wilson, On the antiplectic pair connected with the Adler-Gel’fand-Dikiĭ bracket, Nonlinearity 5 (1992), no. 1, 109-131. · Zbl 0761.58023
[41] G. Wilson, Bispectral commutative ordinary differential operators, J. reine angew. Math. 442 (1993), 177-204. · Zbl 0781.34051
[42] G. Wilson, Collisions of Calogero-Moser particles and an adelic Grassmannian, Invent. Math. 133 (1998), no. 1, 1-41. · Zbl 0906.35089
[43] E. Witten, Two-dimensional gravity and intersection theory on moduli space, Surveys in differential geometry (Cambridge 1990), Lehigh University, Bethlehem (1991), 243-310. · Zbl 0757.53049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.