×

Algebras of commuting differential operators for kernels of Airy type. (English) Zbl 07827905

Basor, Estelle (ed.) et al., Toeplitz operators and random matrices. In memory of Harold Widom. Cham: Birkhäuser. Oper. Theory: Adv. Appl. 289, 229-256 (2022).
Summary: Instances of commuting differential and integral operators were discovered by C. Tracy and H. Widom and used to derive asymptotic expansions of Fredholm determinants. Recently, we proved that all rational, symmetric Darboux transformations of the Bessel, Airy, and exponential bispectral functions vastly generalize these examples. In this paper, we give a classification of the Airy family using a differential Galois group action on the Lagrangian locus of the Airy adelic Grassmannian and initiate the study of the full algebra of differential operators commuting with an integral operator. We obtain explicit formulas for the two differential operators of lowest orders that commute with the level one and two integral operators obtained in the Darboux process. Both pairs commute with each other and, in the level one case, are shown to satisfy an algebraic relation defining an elliptic curve.
For the entire collection see [Zbl 1519.47002].

MSC:

47G10 Integral operators
16S32 Rings of differential operators (associative algebraic aspects)
12H05 Differential algebra
14H70 Relationships between algebraic curves and integrable systems

References:

[1] Bakalov, B.; Horozov, E.; Yakimov, M., General methods for constructing bispectral operators, Phys. Lett. A, 222, 59-66 (1996) · Zbl 0972.37545 · doi:10.1016/0375-9601(96)00624-X
[2] Bakalov, B.; Horozov, E.; Yakimov, M., Bispectral algebras of commuting ordinary differential operators, Commun. Math. Phys., 190, 331-373 (1997) · Zbl 0912.34065 · doi:10.1007/s002200050244
[3] B. Bakalov, E. Horozov, M. Yakimov, Automorphisms of the Weyl algebra and bispectral operators, in The Bispectral Problem. CRM Proc. Lecture Notes (AMS, New York, 1998), pp. 3-10 · Zbl 0983.37079
[4] Bateman, H., On the inversion of a definite integral, Proc. Lond. Math. Soc., 2, 461-498 (1907) · JFM 37.0362.03 · doi:10.1112/plms/s2-4.1.461
[5] Bertero, M.; Grünbaum, FA, Commuting differential operators for the finite Laplace transform, Inv. Problems, 1, 181-192 (1985) · Zbl 0603.44002 · doi:10.1088/0266-5611/1/3/004
[6] Casper, WR; Grünbaum, FA; Yakimov, M.; Zurrián, I., Reflective prolate-spheroidal operators and the KP/KdV equations, Proc. Natl. Acad. Sci. U. S. A., 116, 37, 18310-18315 (2019) · Zbl 1462.35330 · doi:10.1073/pnas.1906098116
[7] W.R. Casper, F.A. Grünbaum, M. Yakimov, I. Zurrián, Reflective prolate-spheroidal operators and the Adelic Grassmannian. Commun. Pure Appl. Math. (to appear) arXiv:2003.11616
[8] Casper, WR; Yakimov, M., Integral operators, bispectrality and growth of Fourier algebras, J. Reine Angew. Math., 766, 151-194 (2020) · Zbl 1540.47069 · doi:10.1515/crelle-2019-0031
[9] M. Castro, F.A. Grünbaum, Time-and-band limiting for matrix orthogonal polynomials of Jacobi type. Random Matrices Theory Appl. 6(04), 1740001, 12 p. (2017) · Zbl 1376.33010
[10] A. Connes, C. Consani, Spectral triples and zeta-cycles (2021). arXiv:2106.01715
[11] Connes, A.; Marcoli, M., Noncommutative Geometry, Quantum Fields and Motives (2008), Providence: AMS Colloquium Publications, Providence · Zbl 1209.58007
[12] A. Connes, H. Moscovici, Prolate spheroidal operator and zeta (2021). arXiv:2112.05500
[13] Duistermaat, JJ; Grünbaum, FA, Differential equations in the spectral parameter, Commun. Math. Phys., 103, 177-240 (1986) · Zbl 0625.34007 · doi:10.1007/BF01206937
[14] Fuchs, M.; Math, J., Anal. Appl., 9, 317-330 (1964) · Zbl 0178.47403 · doi:10.1016/0022-247X(64)90017-4
[15] Grünbaum, FA, Eigenvectors of a Toeplitz matrix: discrete version of the prolate spheroidal wave functions, SIAM J. Algebraic Discrete Methods, 2, 136-141 (1981) · Zbl 0519.47019 · doi:10.1137/0602017
[16] Grünbaum, FA, Band-time-band limiting integral operators and commuting differential operators, Algebra i Analiz, 8, 122-126 (1996) · Zbl 0878.47031
[17] F.A. Grünbaum, Commuting Integral and differential operators and the master symmetries of the Korteweg-de Vries equation. Inv. Problems 37(8), 21 pp. (2021). Paper No. 085010 · Zbl 07375642
[18] Grünbaum, FA; Haine, L.; Clarkson, P.; Nijhoff, F., The Wilson bispectral involution: some elementary examples, Canterbury Meeting, 353-368 (1999), Cambridge University Press: Cambridge, Cambridge University Press · Zbl 0924.34074
[19] Grünbaum, FA; Longhi, L.; Perlstadt, M., Differential operators commuting with finite convolution integral operators: some nonabelian examples, SIAM J. Appl. Math., 42, 941-955 (1982) · Zbl 0497.22012 · doi:10.1137/0142067
[20] Grünbaum, FA; Pacharoni, I.; Zurrián, I., Bispectrality and time-band limiting: matrix-valued polynomials, Int. Math. Res. Not., 2020, 13, 4016-4036 (2020) · Zbl 07236276 · doi:10.1093/imrn/rny140
[21] P. Iliev, q-KP hierarchy, bispectrality and Calogero-Moser systems. J. Geom. Phys. 35, 157-182 (2000) · Zbl 0983.37080
[22] Ince, EL, Ordinary Differential Equations (1944), New York: Dover Publ, New York · Zbl 0063.02971
[23] Kasman, A.; Rothstein, M., Bispectral Darboux transformations: the generalized Airy case, Phys. D, 102, 159-176 (1997) · Zbl 0890.58095 · doi:10.1016/S0167-2789(96)00208-4
[24] J. Kiukas, R. Werner, Maxima violation of Bell inequalities by position measurements. J. Math. Phys. 51 (2010). Art 072105 · Zbl 1311.81030
[25] Kontsevich, M., Intersection theory on the moduli space of curves and the matrix Airy function, Commun. Math. Phys., 147, 1-23 (1992) · Zbl 0756.35081 · doi:10.1007/BF02099526
[26] I.M. Krichever, Integration of nonlinear equations by the methods of algebraic geometry. Funkcional. Anal. i Priložen. 11, 15-31 (1977); transl. Funct. Anal. Appl. 11(1), 12-26 (1977) · Zbl 0368.35022
[27] Landau, HJ; Pollak, HO, Prolate spheroidal wave functions, Fourier analysis and uncertainty. II. Bell System Tech. J., 40, 65-84 (1961) · Zbl 0184.08602 · doi:10.1002/j.1538-7305.1961.tb03977.x
[28] Landau, HJ; Pollak, HO, Prolate spheroidal wave functions, Fourier analysis and uncertainty. III. Bell System Tech. J., 41, 1295-1336 (1962) · Zbl 0184.08603 · doi:10.1002/j.1538-7305.1962.tb03279.x
[29] Mehta, ML, Random Matrices (2004), Amsterdam: Elsevier Publ, Amsterdam · Zbl 1107.15019
[30] A. Osipov, V. Rokhlin, H. Xiao, Prolate Spheroidal Wave Functions of Order Zero. Springer Series Applied Mathematical Sciences, vol. 187 (2013) · Zbl 1287.65015
[31] Van der Put, M.; Singer, MF, Galois Theory of Linear Differential Equations (2012), New York: Springer Science & Business Media, New York
[32] Slepian, D., Prolate spheroidal wave functions, Fourier analysis and uncertainity. IV. Extensions to many dimensions; generalized prolate spheroidal functions, Bell System Tech. J., 43, 3009-3057 (1964) · Zbl 0184.08604 · doi:10.1002/j.1538-7305.1964.tb01037.x
[33] Slepian, D., Prolate spheroidal wave functions, Fourier analysis, and uncertainty V, The discrete case. Bell Syst. Tech. J., 52, 1371-1430 (1978) · Zbl 0378.33006 · doi:10.1002/j.1538-7305.1978.tb02104.x
[34] Slepian, D., On bandwith, Proc. IEEE, 64, 292-300 (1976) · doi:10.1109/PROC.1976.10110
[35] Slepian, D., Some comments on Fourier analysis, uncertainty and modelling, SIAM Rev., 25, 379-393 (1983) · Zbl 0571.94004 · doi:10.1137/1025078
[36] Slepian, D.; Pollak, HO, Prolate spheroidal wave functions, Fourier analysis and uncertainty. I. Bell System Tech. J., 40, 43-63 (1961) · Zbl 0184.08601 · doi:10.1002/j.1538-7305.1961.tb03976.x
[37] Tracy, CA; Widom, H., Fredholm determinants, differential equations and matrix models, Commun. Math. Phys., 163, 33-72 (1994) · Zbl 0813.35110 · doi:10.1007/BF02101734
[38] Tracy, CA; Widom, H., Level-spacing distributions and the Airy kernel, Commun. Math. Phys., 159, 151-174 (1994) · Zbl 0789.35152 · doi:10.1007/BF02100489
[39] Wilson, G., Bispectral commutative ordinary differential operators, J. Reine Angew. Math., 442, 177-204 (1993) · Zbl 0781.34051
[40] Wilson, G., On the antiplectic pair connected with the Adler-Gelfand-Dikii braket, Nonlinearity, 5, 109-131 (1992) · Zbl 0761.58023 · doi:10.1088/0951-7715/5/1/004
[41] E. Witten, Two-dimensional gravity and intersection theory on moduli space. Surv. Differ. Geom. 1, 243-310 (1991). Lehigh University, Cambridge, MA, 1990 · Zbl 0757.53049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.