×

On submanifolds of Hopf manifolds. (English) Zbl 0649.53031

Let \(H^ m\) be diffeomorphic to \(S^{2m-1}\times S^ 1\) with the complex structure given by Hopf, called a Hopf manifold [see S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. II (1969; Zbl 0175.485), p. 137]. A submanifold M of \(H^ m\) is said to have semi-flat normal connection if the normal curvature tensor \(R^{\perp}\) satisfies: \(R^{\perp}(X,Y)\xi =\rho \circ g(X, \tan JY) nor J\xi\) for some real-valued smooth function \(\rho\) on M any tangent vector fields X, Y on M and any normal section \(\xi\), where tan Z and nor Z denote the orthogonal projection of Z on the tangent and on the normal bundle respectively, and J denotes the complex structure of \(H^ m.\)
It is said to be a quasi-Einstein submanifold if the Ricci tensor of M satisfies: \(Ric=ag+bw\otimes w\) for some real-valued smooth functions a, b on M, where w denotes the 1-form naturally induced on M by the Lee form of \(H^ m\). In this article it is proved that if M is an invariant submanifold of \(H^ m\) with semi-flat normal connection then it is a totally umbilical quasi-Einstein submanifold with flat normal connection unless it a complex hypersurface. It is also proved that the only totally-umbilical invariant submanifolds of zero scalar curvature of \(H^ m\) are the totally-geodesic flat surfaces.
Reviewer: R.Tribuzy

MSC:

53C40 Global submanifolds

Citations:

Zbl 0175.485
Full Text: DOI

References:

[1] Aubin, T., Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl., 55, 269-296 (1976) · Zbl 0336.53033
[2] Chen, B. Y.; Picinni, P., The canonical foliations of a locally conformal Kaehler manifold, Ann. Mat., 35, 289-305 (1985) · Zbl 0587.53059 · doi:10.1007/BF01763178
[3] Deprez, J.; Petrovic, M.; Verstralen, L., New intrinsic characterizations of conformally flat hypersurfaces and of Einstein hypersurfaces, Bend. Sem. Fac. Sci. Univ. Cagliari (2), 55, 67-78 (1985) · Zbl 0619.53017
[4] S. Dragomir,Cauchy-Riemann submanifolds of locally conformal Kaehler manifolds, I submitted to Geom. Dedic.,II submitted to Atti Semin. Mat. Fis. Univ. Modena (1987).
[5] Goldberg, S., Curvature and Homology (1962), New York: Academic Press, New York · Zbl 0105.15601
[6] Goldberg, S.; Vaisman, I., On compact locally conformal Kaehler manifolds with nonnegative sectional curvature, Ann. Fac. Sci. Toulouse, 2, 117-123 (1980) · Zbl 0447.53054
[7] Goldberg, S.; Okumura, M., Conformally flat manifolds and a pinching problem on the Ricci tensor, Proc. Am. Math. Soc., 58, 234-236 (1976) · Zbl 0337.53040 · doi:10.2307/2041391
[8] S. Ianus, K. Matsumoto and L. Ornea,Complex hypersurfaces of a generalized Hopf manifold, submitted to Tensor (1987). · Zbl 0637.53026
[9] Ishihara, I., Kaehler submanifolds satisfying a certain condition on normal connection, Atti Accad. Naz. Lincei, LXII, 30-35 (1977) · Zbl 0381.53013
[10] Kobayashi, S.; Nomizu, K., Foundations of Differential Geometry (1969), New York: Interscience Publishers, New York · Zbl 0175.48504
[11] Lee, J. M.; Parker, T. H., The Yamabe problem, Bull. Am. Math. Soc. (1), 17, 37-91 (1987) · Zbl 0633.53062
[12] Vaisman, I., Locally conformal Kaehler manifolds with parallel Lee form, Rend. Mat., 12, 263-284 (1979) · Zbl 0447.53032
[13] Vaisman, I., A theorem on compact locally conformal Kaehler manifolds, Proc. Am. Math. Soc. (2), 75, 279-283 (1979) · Zbl 0414.53045 · doi:10.2307/2042757
[14] Vaisman, I., Generalized Hopf manifolds, Geom. Dedic., 13, 231-255 (1982) · Zbl 0506.53032 · doi:10.1007/BF00148231
[15] Yano, K.; Kon, M.; Coates, J.; Helgason, S., C.R. submanifolds of Kaehlerian and Sasakian manifolds, Progress in Math (1983), Boston-Basel-Stuttgart: Birkhauser, Boston-Basel-Stuttgart · Zbl 0496.53037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.