×

Best possible componentwise parameter inclusions computable from a priori estimates, measurements, and bounds for the measurement errors. (English) Zbl 1019.65031

Let \(f= (f_i): D\subseteq\mathbb{R}^n\to \mathbb{R}^m\) be a twice continuously differentiable function, let \(Y\) be a given box in \(\mathbb{R}^m\) and let \(X_0\) be a given box in \(D\). It is known that a parameter \(\overline x\in \mathbb{R}^n\) satisfies \(\overline x\in L:= f^{-1}(Y)\cap X_0\). Unless further information on \(\overline x\in \mathbb{R}^n\) is available the best possible inclusion \(X\) of \(\overline x\in \mathbb{R}^n\) by a box is the smallest box containing \(L\).
It is the aim of the paper to compute boxes \(X^{(i)}\), \(X^{(o)}\) such that \(X^{(i)}\subseteq X\subseteq X^{(o)}\) holds, i.e., \(X^{(i)}\), \(X^{(o)}\) are inner and outer enclosures of \(X\), respectively. Choosing \(x_0\in X_0\) the method being presented is based on computed approximations of \(f_j(x_0)\) and of grad \(f_j(x_0)\) and on some enclosure involving Hessians. Polyhedra \(p^{(i)}\), \(p^{(0)}\) are defined which satisfy \(p^{(i)}\cap X_0\subseteq L\subseteq p^{(o)}\cap X_0\). Then \(X^{(i)}\), \(X^{(o)}\) can be obtained as good inner and outer approximations, respectively, of the interval hull of these intersections.
A typical practical case from geodesy is discussed and illustrated by two numerical examples. Additional examples conclude the paper.

MSC:

65H10 Numerical computation of solutions to systems of equations
65G30 Interval and finite arithmetic
86A30 Geodesy, mapping problems
65G20 Algorithms with automatic result verification

Software:

PASCAL-XSC
Full Text: DOI

References:

[1] Frommer, A.; Heindl, G., Verläßliches Rechnen, output, J. Univ. Wuppertal, 3, 17-20 (1998)
[2] Hammer, R.; Hocks, M.; Kulisch, U.; Ratz, D., Numerical Toolbox for Verified Computing I (1993), Springer: Springer Berlin · Zbl 0796.65001
[3] G. Heindl, Über einige typische Toleranzprobleme aus der Vermessungstechnik, in: G. Bohlender, K. Grüner (Eds.), Vortragsbeiträge zum Workshop Wissenschaftliches Rechnen mit gesicherten Ergebnissen, Karlsruhe, 12-15 September 1994, University of Karlsruhe, 1994, pp. 1-18.; G. Heindl, Über einige typische Toleranzprobleme aus der Vermessungstechnik, in: G. Bohlender, K. Grüner (Eds.), Vortragsbeiträge zum Workshop Wissenschaftliches Rechnen mit gesicherten Ergebnissen, Karlsruhe, 12-15 September 1994, University of Karlsruhe, 1994, pp. 1-18.
[4] Heindl, G., A method for verified computing of inner and outer approximations of the interval hull of a tolerance polyhedron, (Alefeld, G.; Frommer, A.; Lang, B., Scientific Computing and Validated Numerics (1996), Akademie Verlag: Akademie Verlag Berlin), 207-213 · Zbl 0849.65022
[5] Heindl, G.; Reinhart, E., Eine allgemeine Methode zur Berechnung von MINIMAX-Fehlern, Teil 1: Bei vorliegenden Messungen, Z. Vermessungswesen, 101, 126-132 (1976) · Zbl 0327.65013
[6] Heindl, G.; Reinhart, E., Eine allgemeine Methode zur Berechnung von MINIMAX-Fehlern, Teil 2: Vor der Durchführung von Messungen, Z. Vermessungswesen, 101, 238-241 (1976) · Zbl 0327.65014
[7] Heindl, G.; Reinhart, E., Eine allgemeine Methode zur Berechnung von MINIMAX-Fehlern, Teil 3: Bei teils vorliegenden, teils projektierten Messungen, Z. Vermessungswesen, 103, 149-155 (1978) · Zbl 0379.65009
[8] Klatte, R.; Kulisch, U.; Neaga, M.; Ratz, D.; Ullrich, Ch., PASCAL-XSC Language Reference with Examples (1992), Springer: Springer New York · Zbl 0757.68023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.