×

A note on Rabin’s width of a complete proof. (English) Zbl 0806.68062

The concept of generic width of a semi-algebraic set is introduced and used to obtain various lower bounds for decisional complexities. Rabin considered the optimality of algorithms solving the membership problem for convex sets defined by the simultaneous positivity of linear forms and gave several applications. In the paper, a rigorous proof of a theorem of Rabin is given and insufficiencies in the original Rabin’s proof are discussed (it is not true that the closure of a semi-algebraic set can be simply defined by relaxing inequalities on the polynomials defining it). The method presented in the paper has new applications to more general situations than linear ones. Convincing lower bounds for several important decision problems in real algebraic geometry (like the existence of a real root) or in computational geometry (directed oriented convex problem) are obtained.
Reviewer: M.-F.Roy (Rennes)

MSC:

68Q25 Analysis of algorithms and problem complexity
68W30 Symbolic computation and algebraic computation
14P20 Nash functions and manifolds
14P10 Semialgebraic sets and related spaces
Full Text: DOI

References:

[1] M. Ben-Or, Lower bounds for algebraic computation trees. InProc. Fifteenth Ann. ACM Symp. Theor. Comput., 1983, 80-86.
[2] R. Benedetti andJ. J. Risler,Real algebraic and semialgebraic geometry. Hermann, Paris, 1990. · Zbl 0694.14006
[3] J. Bochnak, M. Coste andM.-F. Roy,Géométrie algébrique réelle. Ergebnisse der Math., 3.Folge, Band12, Springer-Verlag, Berlin, Heidelberg, New York, 1987.
[4] J. Bochnak, Sur la factorialité des anneaux de fonctions de Nash.Comment. Math. Helv. 52 (1977), 211-218. · Zbl 0369.14003 · doi:10.1007/BF02567365
[5] L. Bröcker, Minimale Erzeugung von Positivbereich.Geom. Dedicata 16 (1984), 335-350.
[6] L. Bröcker, Spaces of orderings and semialgebraic sets. InQuadratic and Hermitian Forms, CMS Conf. Proc. 4, Providence, Amer. Math. Soc. (1984), 231-248.
[7] M. Coste, Ensembles Semi-algébriques. InGéométrie Algébrique Réelle et Formes Quadratiques, ed.J. L. Colliot-Thélene, M. Coste, L. Mahé, andM.-F. Roy. Lecture Notes in Mathematics959, Springer-Verlag, Berlin, Heidelberg, New York, 1982, 109-139.
[8] J. Jaromczyk, An extension of Rabin’s complete proof concept. InMath. Found. of Comp. Sci. 1981, ed.J. Gruska andM. Chytill. Lecture Notes in Computer Science118, Springer-Verlag, Berlin, Heidelberg, New York, 1981, 321-326. · Zbl 0471.68026
[9] J. L. Montaña, L. M. Pardo andT. Recio, The non-scalar model of complexity in computational geometry. InProc. MEGA’90, ed.C. Traverso andT. Mora. Progress in Mathematics94, Birkhäuser Boston, 1991, 347-362. · Zbl 0762.14027
[10] M. O. Rabin, Proving simultaneous positivity of linear forms.J. Comput. System Sci. 6 (1972) 639-650. · Zbl 0274.68022 · doi:10.1016/S0022-0000(72)80034-5
[11] T. Recio, Una Descomposición de un Conjunto Semialgebraico. InActas del V Congreso de la Agrupación de Matemáticos de Expresión Latina, CSIC, Publicaciones del Instituto Jorge Juan, Madrid, 1978, 217-221.
[12] J. J. Risler, Sur l’anneau des fonctions de Nash globales.Ann. Scien. Ecole Norm. Sup., 4éme série,8 (1975), 365-378. · Zbl 0318.32002
[13] J.T. Schwartz,Differential Geometry and Topology Notes on Mathematics and its Applications, Gordon and Breach, 1968.
[14] V. Strassen, Algebraic Complexity Theory. InHandbook of Theoretical Computer Science, ed.J. van Leeuwen. Elsevier, Amsterdam, 1990, 633-673.
[15] F.F. Yao, Computational Geometry. InHandbook of Theoretical Computer Science, ed.J. van Leeuwen. Elsevier, Amsterdam, 1990, 343-391.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.