×

The density condition in subspaces and quotients of Fréchet spaces. (English) Zbl 0804.46002

The aim of this article is to investigate the density condition of subspaces and separated quotients of Fréchet spaces. This condition, introduced by S. Heinrich [Math. Nachr. 121, 211-229 (1985; Zbl 0601.46001)], was thoroughly studied by K. D. Bierstedt and J. Bonet [Math. Nachr. 135, 149-180 (1988; Zbl 0688.46001)]. They proved that a Fréchet space \(E\) has the density condition if and only if the bounded subsets of its strong dual are metrizable, and that a Köthe echelon space of order one, \(\lambda_ 1(I,A)\), is distinguished if and only if it has the density condition.
In this paper it is proved that every Fréchet space \(E\) which is neither Montel nor isomorphic to a subspace of \(X\times \omega\), with \(X\) a Banach and \(\omega= R^ \aleph\), must contain a closed subspace with basis and not satisfying the density condition, provided that \(E\) decomposes as \(F\oplus G\), where \(F\) and \(G\) are infinite-dimensional subspaces not isomorphic to \(\omega\). It is also proved that every Köthe echelon space of order \(p\) \((1< p<\infty)\) which is not quasinormable has a separated quotient with basis which does not satisfy the density condition.

MSC:

46A04 Locally convex Fréchet spaces and (DF)-spaces
46A45 Sequence spaces (including Köthe sequence spaces)
46A11 Spaces determined by compactness or summability properties (nuclear spaces, Schwartz spaces, Montel spaces, etc.)

References:

[1] Bastin, F.: Distinguishedness of weighted Fréchet spaces of continuous functions. Proc. Edinburgh Math. Soc.35, 271-283 (1992). · doi:10.1017/S0013091500005538
[2] Bastin, F., Bonet, J.: Locally bounded non-continuous linear forms on strong duals of non-distinguished Fréchet spaces. Proc. Amer. Math. Soc.108, 769-774 (1990). · Zbl 0724.46006
[3] Bellenot, S. F.: Basic sequences in non-Schwartz Fréchet spaces. Trans. Amer. Math. Soc.258, 199-216 (1980). · Zbl 0426.46001
[4] Bessaga, C., Pelcynski, A., Rolewicz, S.: On diametral approximative dimension and linear homogeneity ofF-spaces. Bull. Acad. Polon. Sci.9, 677-683 (1961). · Zbl 0109.33502
[5] Bierstedt, K. D., Bonet, J.: Stefan Heinrich’s density condition for Fréchet spaces and the characterization of distinguished Köthe echelon spaces. Math Nachr.,135, 149-180 (1988). · Zbl 0688.46001 · doi:10.1002/mana.19881350115
[6] Bierstedt, K. D., Meise, R., Summers, W. H.: Köthe sets and Köthe sequence spaces. In: Functional Analysis, Holomorphy and Approximation Theory. pp. 27-91. Amsterdam: North Holland. 1982. · Zbl 0504.46007
[7] Bonet, J.: A question of Valdivia on quasinormable Fréchet spaces. Canad. Math. Bull.34, 301-304 (1991). · doi:10.4153/CMB-1991-049-7
[8] Bonet, J., Díaz, J. C.: Distinguished subspaces and quotients of Köthe echelon spaces. Bull. Polish Acad. Sci.39, 177-183 (1991). · Zbl 0777.46007
[9] Bonet, J., Dierolf, S.: On distinguished Fréchet spaces. In: Progress in Funct. Anal. pp. 201-214. Amsterdam: North Holland. 1992. · Zbl 0785.46003
[10] Bonet, J., Taskinen, J.: Non-distinguished Fréchet function spaces. Bull. Soc. Roy. Sci. Liége58, 483-490 (1989). · Zbl 0711.46001
[11] Díaz, J. C.: An example of Fréchet space, not Montel, without infinite dimensional normable subspaces. Proc. Amer. Math. Soc.96, 721 (1986). · Zbl 0592.46001 · doi:10.1090/S0002-9939-1986-0826509-7
[12] Díaz, J. C., Metafune, G.: The problem of topologies of Grothendieck for quojections. Results in Math.21, 299-312 (1992). · Zbl 0787.46002
[13] Díaz, J. C., Miñarro, M. A.: On total bounded sets in Köthe echelon spaces. Bull. Soc. Roy. Sci. Liège59, 483-492 (1990). · Zbl 0759.46004
[14] Drewnowski, L.: On minimally subspace-comparable F-spaces. J. Funct. Anal.26, 315-332 (1977). · Zbl 0366.46012 · doi:10.1016/0022-1236(77)90018-0
[15] Heinrich, S.: Ultrapowers of locally convex spaces and applications, I. Math. Nachr.118, 211-229 (1984). · Zbl 0601.46001
[16] Köthe, G.: Topological Vector Spaces, I, II. Berlin: Springer. 1969, 1979. · Zbl 0179.17001
[17] Meise, R., Vogt, D.: A characterization of quasinormable Fréchet spaces. Math. Nachr.122, 141-150 (1985). · Zbl 0583.46002 · doi:10.1002/mana.19851220114
[18] Peris, A.: Some results on Fréchet spaces with the density condition. Archiv Math.59, 286-293 (1992). · doi:10.1007/BF01197327
[19] Rosenthal, H. P.: On totally incomparable Banach spaces. J. Funct. Anal.4, 167-175 (1969). · Zbl 0184.15004 · doi:10.1016/0022-1236(69)90010-X
[20] Valdivia, M.: Topics in Locally Convex Spaces. Amsterdam: North-Holland. 1982. · Zbl 0489.46001
[21] Valdivia, M.: A characterization of totally reflexive spaces. Math. Z.200, 327-346 (1989). · Zbl 0683.46008 · doi:10.1007/BF01215650
[22] Valdivia, M.: Resolution of identity in certain metrizable locally convex spaces. Rev. Real Acad. Cienc. Madrid83, 75-96 (1989). · Zbl 0708.46003
[23] Vogt, D.: Distinguished Köthe spaces. Math. Z.202, 143-146 (1989). · Zbl 0661.46008 · doi:10.1007/BF01180688
[24] Vogt, D., Wagner, M. J.: Charakterisierung der Quotientenräume vons und eine Vermutung von Martineau. Studia Math.67, 225-240 (1980). · Zbl 0464.46010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.