×

Analysis of dynamic ruptures generating seismic waves in a self-gravitating planet: an iterative coupling scheme and well-posedness. (English) Zbl 1435.76022

Summary: We study the solution of the system of equations describing the dynamical evolution of spontaneous ruptures generated in a prestressed elastic-gravitational deforming body and governed by rate and state friction laws. We propose an iterative coupling scheme based on a weak formulation with nonlinear interior boundary conditions, both for continuous time and with implicit discretization (backward Euler) in time. We regularize the problem by introducing viscosity. This guarantees the convergence of the scheme for solutions of the regularized problems in both cases. We also make precise the conditions on the relevant coefficients for convergence to hold.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
35K86 Unilateral problems for nonlinear parabolic equations and variational inequalities with nonlinear parabolic operators
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
35A35 Theoretical approximation in context of PDEs
49J40 Variational inequalities

References:

[1] Aagaard2013 Brad T Aagaard, Matthew G Knepley, and Charles A Williams, A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation, Journal of Geophysical Research: Solid Earth 118 (2013), no. 6, 3059-3079.
[2] Andrews2002 David J Andrews, A fault constitutive relation accounting for thermal pressurization of pore fluid, Journal of Geophysical Research: Solid Earth 107 (2002), no. B12, ESE-15.
[3] Benjemaa2009 Mondher Benjemaa, Nathalie Glinsky-Olivier, VM Cruz-Atienza, and Jean Virieux, 3-D dynamic rupture simulations by a finite volume method, Geophysical Journal International 178 (2009), no. 1, 541-560.
[4] Beretta, Elena; de Hoop, Maarten V.; Francini, Elisa; Vessella, Sergio; Zhai, Jian, Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves, Inverse Problems, 33, 3, 035013, 27 pp. (2017) · Zbl 1372.35356 · doi:10.1088/1361-6420/aa5bef
[5] Beretta, Elena; de Hoop, Maarten V.; Faucher, Florian; Scherzer, Otmar, Inverse boundary value problem for the Helmholtz equation: quantitative conditional Lipschitz stability estimates, SIAM J. Math. Anal., 48, 6, 3962-3983 (2016) · Zbl 1351.35258 · doi:10.1137/15M1043856
[6] Brazda2017 Katharina Brazda, Maarten V. de Hoop, and G\"unther H\"ormann, Variational formulation of the earth’s elastic-gravitational deformations under low regularity conditions, Cambridge University Press, 2017, pp. 1-81.
[7] Bureau2000 L Bureau, T Baumberger, and C Caroli, Shear response of a frictional interface to a normal load modulation, Physical Review E 62 (2000), no. 5, 6810.
[8] Dahlen1972 Francis A Dahlen, Elastic dislocation theory for a self-gravitating elastic configuration with an initial static stress field, Geophysical Journal International 28 (1972), no. 4, 357-383. · Zbl 0268.73057
[9] Dahlen1973 Francis A Dahlen, Elastic dislocation theory for a self-gravitating elastic configuration with an initial static stress field II. Energy release, Geophysical Journal International 31 (1973), no. 4, 469-484. · Zbl 0265.73088
[10] Dahlen1977 Francis A Dahlen, The balance of energy in earthquake faulting, Geophysical Journal International 48 (1977), no. 2, 239-261. · Zbl 0365.73096
[11] Dalguer2007 Luis A Dalguer and Steven M Day, Staggered-grid split-node method for spontaneous rupture simulation, Journal of Geophysical Research: Solid Earth 112 (2007), no. B2, 1-15.
[12] Day2005 Steven M Day, Luis A Dalguer, Nadia Lapusta, and Yi Liu, Comparison of finite difference and boundary integral solutions to three-dimensional spontaneous rupture, Journal of Geophysical Research: Solid Earth 110 (2005), no. B12, 1-23.
[13] deHoop2015 Maarten V de Hoop, Sean Holman, and Ha Pham, On the system of elastic-gravitational equations describing the oscillations of the earth, arXiv:1511.03200 (2015), 1-51.
[14] delaPuente2009 Josep de la Puente, J-P Ampuero, and Martin K\"aser, Dynamic rupture modeling on unstructured meshes using a discontinuous Galerkin method, Journal of Geophysical Research: Solid Earth 114 (2009), no. B10, 1-17.
[15] Dieterich1979 James H Dieterich, Modeling of rock friction: 1. experimental results and constitutive equations, Journal of Geophysical Research: Solid Earth 84 (1979), no. B5, 2161-2168.
[16] Dunham2011 Eric M Dunham, David Belanger, Lin Cong, and Jeremy E Kozdon, Earthquake ruptures with strongly rate-weakening friction and off-fault plasticity, part 1: Planar faults, Bulletin of the Seismological Society of America 101 (2011), no. 5, 2296-2307.
[17] Duru, Kenneth; Dunham, Eric M., Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids, J. Comput. Phys., 305, 185-207 (2016) · Zbl 1349.86049 · doi:10.1016/j.jcp.2015.10.021
[18] Geubelle, Philippe H.; Rice, James R., A spectral method for three-dimensional elastodynamic fracture problems, J. Mech. Phys. Solids, 43, 11, 1791-1824 (1995) · Zbl 0876.73050 · doi:10.1016/0022-5096(95)00043-I
[19] Girault, Vivette; Kumar, Kundan; Wheeler, Mary F., Convergence of iterative coupling of geomechanics with flow in a fractured poroelastic medium, Comput. Geosci., 20, 5, 997-1011 (2016) · Zbl 1391.76650 · doi:10.1007/s10596-016-9573-4
[20] Harris2017 Ruth A Harris, Large earthquakes and creeping faults, Reviews of Geophysics 55 (2017), no. 1, 169-198.
[21] Ionescu, Ioan R., Viscosity solutions for dynamic problems with slip-rate dependent friction, Quart. Appl. Math., 60, 3, 461-476 (2002) · Zbl 1045.35097 · doi:10.1090/qam/1914436
[22] Ionescu, Ioan R.; Nguyen, Quoc-Lan; Wolf, Sylvie, Slip-dependent friction in dynamic elasticity, Nonlinear Anal., 53, 3-4, 375-390 (2003) · Zbl 1062.74033 · doi:10.1016/S0362-546X(02)00302-4
[23] Ionescu, Ioan R.; Paumier, Jean-Claude, On the contact problem with slip displacement dependent friction in elastostatics, Internat. J. Engrg. Sci., 34, 4, 471-491 (1996) · Zbl 0900.73682 · doi:10.1016/0020-7225(95)00109-3
[24] Kaneko2008a Yoshihiro Kaneko, Nadia Lapusta, and Jean-Paul Ampuero, Spectral element modeling of spontaneous earthquake rupture on rate and state faults: effect of velocity-strengthening friction at shallow depths, Journal of Geophysical Research: Solid Earth 113 (2008), no. B9, 1-17.
[25] Klarbring, A.; Mikeli\'{c}, A.; Shillor, M., Frictional contact problems with normal compliance, Internat. J. Engrg. Sci., 26, 8, 811-832 (1988) · Zbl 0662.73079 · doi:10.1016/0020-7225(88)90032-8
[26] Kozdon, Jeremy E.; Dunham, Eric M.; Nordstr\"{o}m, Jan, Simulation of dynamic earthquake ruptures in complex geometries using high-order finite difference methods, J. Sci. Comput., 55, 1, 92-124 (2013) · Zbl 1278.86009 · doi:10.1007/s10915-012-9624-5
[27] Linker1992 M. F. Linker and James H Dieterich, Effects of variable normal stress on rock friction: Observations and constitutive equations, Journal of Geophysical Research: Solid Earth 97 (1992), no. B4, 4923-4940.
[28] Lozos2015 Julian C Lozos, Ruth A Harris, Jessica R Murray, and James J Lienkaemper, Dynamic rupture models of earthquakes on the Bartlett Springs Fault, Northern California, Geophysical Research Letters 42 (2015), no. 11, 4343-4349.
[29] Martins, J. A. C.; Oden, J. T., Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws, Nonlinear Anal., 11, 3, 407-428 (1987) · Zbl 0672.73079 · doi:10.1016/0362-546X(87)90055-1
[30] O’Reilly, Ossian; Nordstr\"{o}m, Jan; Kozdon, Jeremy E.; Dunham, Eric M., Simulation of earthquake rupture dynamics in complex geometries using coupled finite difference and finite volume methods, Commun. Comput. Phys., 17, 2, 337-370 (2015) · Zbl 1373.86011 · doi:10.4208/cicp.111013.120914a
[31] Pelties2012 Christian Pelties, Josep Puente, Jean-Paul Ampuero, Gilbert B Brietzke, and Martin K\"aser, Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes, Journal of Geophysical Research: Solid Earth 117 (2012), no. B2, 1-15.
[32] Pipping2017 Elias Pipping, Existence of long-time solutions to dynamic problems of viscoelasticity with rate-and-state friction, arXiv:1703.04289 (2017), 1-12.
[33] Pipping, Elias; Sander, Oliver; Kornhuber, Ralf, Variational formulation of rate- and state-dependent friction problems, ZAMM Z. Angew. Math. Mech., 95, 4, 377-395 (2015) · Zbl 1322.74054 · doi:10.1002/zamm.201300062
[34] Prakash1998 Vikas Prakash, Frictional response of sliding interfaces subjected to time varying normal pressures, Journal of Tribology 120 (1998), no. 1, 97-102.
[35] Quarteroni, Alfio; Valli, Alberto, Numerical approximation of partial differential equations, Springer Series in Computational Mathematics 23, xvi+543 pp. (1994), Springer-Verlag, Berlin · Zbl 0803.65088
[36] Rice1983 James R Rice, Constitutive relations for fault slip and earthquake instabilities, Pure and Applied Geophysics 121 (1983), no. 3, 443-475.
[37] Rice2006 James R Rice, Heating and weakening of faults during earthquake slip, Journal of Geophysical Research: Solid Earth 111 (2006), no. B5, 1-29.
[38] Rice2001 James R Rice, Nadia Lapusta, and K Ranjith, Rate and state dependent friction and the stability of sliding between elastically deformable solids, Journal of the Mechanics and Physics of Solids 49 (2001), no. 9, 1865-1898. · Zbl 1093.74512
[39] Rice1983a James R Rice and Andy L Ruina, Stability of steady frictional slipping, Journal of Applied Mechanics 50 (1983), no. 2, 343-349. · Zbl 0554.73095
[40] Richardson1999 Eliza Richardson and Chris Marone, Effects of normal stress vibrations on frictional healing, J. Geophys. Res 104 (1999), no. B12, 28859-28878.
[41] Ruina1983 Andy Ruina, Slip instability and state variable friction laws, Journal of Geophysical Research: Solid Earth 88 (1983), no. B12, 10359-10370.
[42] Ruina1981 Andy L Ruina, Friction laws and instabilities: a quasistatic analysis of some dry frictional behavior, Ph.D. thesis, Brown University, 1981.
[43] Salo2008 Mikko Salo, Calder\'on problem, Lecture Notes (2008), 1-59.
[44] Schmitt2015 Stuart V Schmitt, Paul Segall, and Eric M Dunham, Nucleation and dynamic rupture on weakly stressed faults sustained by thermal pressurization, Journal of Geophysical Research: Solid Earth 120 (2015), no. 11, 7606-7640.
[45] Segall2015 Paul Segall and San Lu, Injection-induced seismicity: Poroelastic and earthquake nucleation effects, Journal of Geophysical Research: Solid Earth 120 (2015), no. 7, 5082-5103.
[46] Shapiro2009 Serge A Shapiro and Carsten Dinske, Fluid-induced seismicity: Pressure diffusion and hydraulic fracturing, Geophysical Prospecting 57 (2009), no. 2, 301-310.
[47] Shi2018 Jia Shi, Ruipeng Li, Yuanzhe Xi, Yousef Saad, and Maarten V. de Hoop, Computing planetary interior normal modes with a highly parallel polynomial filtering eigensolver, Proceedings of International Conference for High Performance Computing, Networking, Storage and Analysis (SC18), Dallas, TX, Nov. 11-16, 2018.
[48] Tago2012 Josu\'e Tago, V\'\i ctor M Cruz-Atienza, Jean Virieux, Vincent Etienne, and Francisco J S\'anchez-Sesma, A 3D hp-adaptive discontinuous Galerkin method for modeling earthquake dynamics, Journal of Geophysical Research: Solid Earth 117 (2012), no. B9, 1-21.
[49] Thomas2017 Marion Y. Thomas, Jean-Philippe Avouac, and Nadia Lapusta, Rate-and-state friction properties of the Longitudinal Valley Fault from kinematic and dynamic modeling of seismic and aseismic slip, Journal of Geophysical Research: Solid Earth 122 (2017), no. 4, 3115-3137, 2016JB013615.
[50] Valette1987 B Valette, Spectre des oscillations libres de la Terre: aspects math\'ematiques et g\'eophysiques (spectrum of the free oscillations of the Earth: mathematical and geophysical aspects), 1987.
[51] Woodhouse1978 Jim H Woodhouse and Francis A Dahlen, The effect of a general aspherical perturbation on the free oscillations of the Earth, Geophysical Journal International 53 (1978), no. 2, 335-354. · Zbl 0381.73089
[52] Ye2018ruptnum Ruichao Ye, Kundan Kunmar, Maarten V. de Hoop, and Michel Campillo, A multi-rate iterative coupling scheme for simulating dynamic ruptures and seismic waves generation in the self-gravitating earth, Journal of Computational Physics (2019), in print.
[53] Zhang2014 Zhenguo Zhang, Wei Zhang, and Xiaofei Chen, Three-dimensional curved grid finite-difference modelling for non-planar rupture dynamics, Geophysical Journal International 199 (2014), no. 2, 860-879.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.