×

Mechanism design for demand management in energy communities. (English) Zbl 1484.91113

MSC:

91B03 Mechanism design theory
91B32 Resource and cost allocation (including fair division, apportionment, etc.)
91A26 Rationality and learning in game theory

References:

[1] Schmidt, D.A.; Shi, C.; Berry, R.A.; Honig, M.L.; Utschick, W.; Distributed resource allocation schemes; IEEE Signal Process. Mag.: 2009; Volume 26 ,53-63.
[2] Nair, A.S.; Hossen, T.; Campion, M.; Selvaraj, D.F.; Goveas, N.; Kaabouch, N.; Ranganathan, P.; Multi-agent systems for resource allocation and scheduling in a smart grid; Technol. Econ. Smart Grids Sustain. Energy: 2018; Volume 3 ,1-15.
[3] HamaAli, K.W.; Zeebaree, S.R.; Resources allocation for distributed systems: A review; Int. J. Sci. Bus.: 2021; Volume 5 ,76-88.
[4] Menache, I.; Ozdaglar, A.; Network games: Theory, models, and dynamics; Synth. Lect. Commun. Netw.: 2011; Volume 4 ,1-159. · Zbl 1304.91008
[5] Hurwicz, L.; Reiter, S.; ; Designing Economic Mechanisms: Cambridge, UK 2006; .
[6] Börgers, T.; Krahmer, D.; ; An Introduction to the Theory of Mechanism Design: Oxford, UK 2015; . · Zbl 1316.91001
[7] ; 2018 Smart Grid System Report: Washington, DC, USA 2018; .
[8] Garg, D.; Narahari, Y.; Gujar, S.; Foundations of mechanism design: A tutorial part 1-key concepts and classical results; Sadhana: 2008; Volume 33 ,83. · Zbl 1167.91353
[9] Garg, D.; Narahari, Y.; Gujar, S.; Foundations of mechanism design: A tutorial Part 2-Advanced concepts and results; Sadhana: 2008; Volume 33 ,131. · Zbl 1167.91354
[10] Vickrey, W.; Counterspeculation, auctions, and competitive sealed tenders; J. Financ.: 1961; Volume 16 ,8-37.
[11] Clarke, E.H.; Multipart pricing of public goods; Public Choice: 1971; Volume 11 ,17-33.
[12] Groves, T.; Incentives in teams; Econom. J. Econom. Soc.: 1973; Volume 41 ,617-631. · Zbl 0311.90002
[13] Kelly, F.P.; Maulloo, A.K.; Tan, D.K.; Rate control for communication networks: Shadow prices, proportional fairness and stability; J. Oper. Res. Soc.: 1998; Volume 49 ,237-252. · Zbl 1111.90313
[14] Yang, S.; Hajek, B.; Revenue and stability of a mechanism for efficient allocation of a divisible good; Preprint: 2005; .
[15] Maheswaran, R.; Başar, T.; Efficient signal proportional allocation (ESPA) mechanisms: Decentralized social welfare maximization for divisible resources; IEEE J. Sel. Areas Commun.: 2006; Volume 24 ,1000-1009.
[16] Sinha, A.; Anastasopoulos, A.; Mechanism design for resource allocation in networks with intergroup competition and intragroup sharing; IEEE Trans. Control Netw. Syst.: 2018; Volume 5 ,1098-1109. · Zbl 1515.91048
[17] Rabbat, M.; Nowak, R.; Distributed optimization in sensor networks; Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks: ; ,20-27.
[18] Boyd, S.; Parikh, N.; Chu, E.; ; Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers: Hanover, MA, USA 2011; . · Zbl 1229.90122
[19] Wei, E.; Ozdaglar, A.; Jadbabaie, A.; A distributed Newton method for network utility maximization-I: Algorithm; IEEE Trans. Autom. Control: 2013; Volume 58 ,2162-2175. · Zbl 1369.90194
[20] Alvarado, A.; Scutari, G.; Pang, J.S.; A new decomposition method for multiuser DC-programming and its applications; IEEE Trans. Signal Process.: 2014; Volume 62 ,2984-2998. · Zbl 1393.90091
[21] Di Lorenzo, P.; Scutari, G.; Distributed nonconvex optimization over time-varying networks; Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP): ; ,4124-4128.
[22] Sinha, A.; Anastasopoulos, A.; Distributed mechanism design with learning guarantees for private and public goods problems; IEEE Trans. Autom. Control: 2020; Volume 65 ,4106-4121. · Zbl 1533.91115
[23] Heydaribeni, N.; Anastasopoulos, A.; Distributed Mechanism Design for Network Resource Allocation Problems; IEEE Trans. Netw. Sci. Eng.: 2020; Volume 7 ,621-636.
[24] Brown, G.W.; Iterative solution of games by fictitious play; Act. Anal. Prod. Alloc.: 1951; Volume 13 ,374-376. · Zbl 0045.09902
[25] Monderer, D.; Shapley, L.S.; Fictitious play property for games with identical interests; J. Econ. Theory: 1996; Volume 68 ,258-265. · Zbl 0849.90130
[26] Hofbauer, J.; Sandholm, W.H.; On the global convergence of stochastic fictitious play; Econometrica: 2002; Volume 70 ,2265-2294. · Zbl 1141.91336
[27] Milgrom, P.; Roberts, J.; Rationalizability, learning, and equilibrium in games with strategic complementarities; Econom. J. Econom. Soc.: 1990; Volume 58 ,1255-1277. · Zbl 0728.90098
[28] Scutari, G.; Palomar, D.P.; Facchinei, F.; Pang, J.S.; Monotone games for cognitive radio systems; Distributed Decision Making and Control: Berlin/Heidelberg, Germany 2012; ,83-112. · Zbl 1315.91005
[29] Polyak, B.; ; Introduction to Optimization: New York, NY, USA 1987; . · Zbl 0625.62093
[30] Srikant, R.; Ying, L.; ; Communication Networks: An Optimization, Control, and Stochastic Networks Perspective: Cambridge, UK 2013; . · Zbl 1350.90001
[31] Huang, Z.; Mitra, S.; Vaidya, N.; Differentially private distributed optimization; Proceedings of the 2015 International Conference on Distributed Computing and Networking: ; ,1-10.
[32] Cortés, J.; Dullerud, G.E.; Han, S.; Le Ny, J.; Mitra, S.; Pappas, G.J.; Differential privacy in control and network systems; Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC): ; ,4252-4272.
[33] Nozari, E.; Tallapragada, P.; Cortés, J.; Differentially private distributed convex optimization via objective perturbation; Proceedings of the American Control Conference (ACC): ; ,2061-2066. · Zbl 1507.90131
[34] Han, S.; Topcu, U.; Pappas, G.J.; Differentially private distributed constrained optimization; IEEE Trans. Autom. Control: 2017; Volume 62 ,50-64. · Zbl 1359.90167
[35] Groves, T.; Ledyard, J.; Optimal allocation of public goods: A solution to the “free rider” problem; Econom. J. Econom. Soc.: 1977; Volume 45 ,783-809. · Zbl 0363.90015
[36] Hurwicz, L.; Outcome functions yielding Walrasian and Lindahl allocations at Nash equilibrium points; Rev. Econ. Stud.: 1979; Volume 46 ,217-225. · Zbl 0417.90027
[37] Huang, J.; Berry, R.A.; Honig, M.L.; Auction-based spectrum sharing; Mob. Netw. Appl.: 2006; Volume 11 ,405-418.
[38] Wang, B.; Wu, Y.; Ji, Z.; Liu, K.R.; Clancy, T.C.; Game theoretical mechanism design methods; IEEE Signal Process. Mag.: 2008; Volume 25 ,74-84.
[39] Wang, S.; Xu, P.; Xu, X.; Tang, S.; Li, X.; Liu, X.; TODA: Truthful online double auction for spectrum allocation in wireless networks; Proceedings of the 2010 IEEE Symposium on New Frontiers in Dynamic Spectrum (DySPAN): ; ,1-10.
[40] Ghosh, A.; Roth, A.; Selling privacy at auction; Proceedings of the 12th ACM Conference on Electronic Commerce: ; ,199-208. · Zbl 1318.91093
[41] Khalili, M.M.; Naghizadeh, P.; Liu, M.; Designing cyber insurance policies: Mitigating moral hazard through security pre-screening; Proceedings of the International Conference on Game Theory for Networks: Berlin/Heidelberg, Germany 2017; ,63-73. · Zbl 1375.91105
[42] Pal, R.; Wang, Y.; Li, J.; Liu, M.; Crowcroft, J.; Li, Y.; Tarkoma, S.; Data Trading with Competitive Social Platforms: Outcomes are Mostly Privacy Welfare Damaging; IEEE Trans. Netw. Serv. Manag.: 2020; .
[43] Caron, S.; Kesidis, G.; Incentive-based energy consumption scheduling algorithms for the smart grid; Proceedings of the 2010 First IEEE International Conference on Smart Grid Communications: ; ,391-396.
[44] Samadi, P.; Mohsenian-Rad, H.; Schober, R.; Wong, V.W.; Advanced demand side management for the future smart grid using mechanism design; IEEE Trans. Smart Grid: 2012; Volume 3 ,1170-1180.
[45] Muthirayan, D.; Kalathil, D.; Poolla, K.; Varaiya, P.; Mechanism design for demand response programs; IEEE Trans. Smart Grid: 2019; Volume 11 ,61-73.
[46] Iosifidis, G.; Gao, L.; Huang, J.; Tassiulas, L.; An iterative double auction for mobile data offloading; Proceedings of the 2013 11th International Symposium and Workshops on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt): ; ,154-161.
[47] Johari, R.; Tsitsiklis, J.N.; Efficiency loss in a network resource allocation game; Math. Oper. Res.: 2004; Volume 29 ,407-435. · Zbl 1082.90015
[48] Yang, S.; Hajek, B.; VCG-Kelly mechanisms for allocation of divisible goods: Adapting VCG mechanisms to one-dimensional signals; IEEE J. Sel. Areas Commun.: 2007; Volume 25 ,1237-1243.
[49] Johari, R.; Tsitsiklis, J.N.; Efficiency of scalar-parameterized mechanisms; Oper. Res.: 2009; Volume 57 ,823-839. · Zbl 1233.91161
[50] Farhadi, F.; Golestani, S.J.; Teneketzis, D.; A surrogate optimization-based mechanism for resource allocation and routing in networks with strategic agents; IEEE Trans. Autom. Control: 2018; Volume 64 ,464-479. · Zbl 1482.90054
[51] Kakhbod, A.; Teneketzis, D.; An Efficient Game Form for Unicast Service Provisioning; IEEE Trans. Autom. Control: 2012; Volume 57 ,392-404. · Zbl 1370.68038
[52] Kakhbod, A.; Teneketzis, D.; Correction to “An Efficient Game Form for Unicast Service Provisioning” [Feb 12 392-404]; IEEE Trans. Autom. Control: 2015; Volume 60 ,584-585. · Zbl 1369.91032
[53] Sinha, A.; Anastasopoulos, A.; A General Mechanism Design Methodology for Social Utility Maximization with Linear Constraints; ACM Sigmetrics Perform. Eval. Rev.: 2014; Volume 42 ,12-15.
[54] Baumann, L.; Self-Ratings and Peer Review; 2018; .
[55] Bloch, F.; Olckers, M.; Friend-Based Ranking in Practice; ; .
[56] Chen, Y.; A family of supermodular NAvailable online: Ash mechanisms implementing Lindahl allocations; Econ. Theory: 2002; Volume 19 ,773-790. · Zbl 1011.91006
[57] Healy, P.J.; Mathevet, L.; Designing stable mechanisms for economic environments; Theor. Econ.: 2012; Volume 7 ,609-661. · Zbl 1395.91299
[58] Scutari, G.; Facchinei, F.; Pang, J.S.; Palomar, D.P.; Real and complex monotone communication games; IEEE Trans. Inf. Theory: 2014; Volume 60 ,4197-4231. · Zbl 1360.91101
[59] Gharesifard, B.; Cortés, J.; Distributed convergence to Nash equilibria in two-network zero-sum games; Automatica: 2013; Volume 49 ,1683-1692. · Zbl 1360.91012
[60] Ye, M.; Hu, G.; Game design and analysis for price-based demand response: An aggregate game approach; IEEE Trans. Cybern.: 2016; Volume 47 ,720-730.
[61] Grammatico, S.; Dynamic control of agents playing aggregative games with coupling constraints; IEEE Trans. Autom. Control: 2017; Volume 62 ,4537-4548. · Zbl 1390.91063
[62] Yi, P.; Pavel, L.; Distributed generalized Nash equilibria computation of monotone games via double-layer preconditioned proximal-point algorithms; IEEE Trans. Control Netw. Syst.: 2018; Volume 6 ,299-311. · Zbl 1515.91023
[63] Paccagnan, D.; Gentile, B.; Parise, F.; Kamgarpour, M.; Lygeros, J.; Nash and Wardrop equilibria in aggregative games with coupling constraints; IEEE Trans. Autom. Control: 2018; Volume 64 ,1373-1388. · Zbl 1482.91045
[64] Parise, F.; Ozdaglar, A.; A variational inequality framework for network games: Existence, uniqueness, convergence and sensitivity analysis; Games Econ. Behav.: 2019; Volume 114 ,47-82. · Zbl 1419.91160
[65] Xiao, Y.; Hou, X.; Hu, J.; Distributed solutions of convex-concave games on networks; Proceedings of the 2019 American Control Conference (ACC): ; ,1189-1194.
[66] Bimpikis, K.; Ehsani, S.; Ilkılıç, R.; Cournot competition in networked markets; Manag. Sci.: 2019; Volume 65 ,2467-2481.
[67] Zhang, K.; Yang, Z.; Başar, T.; Policy optimization provably converges to Nash equilibria in zero-sum linear quadratic games; arXiv: 2019; .
[68] uz Zaman, M.A.; Zhang, K.; Miehling, E.; Bașar, T.; Reinforcement learning in non-stationary discrete-time linear-quadratic mean-field games; Proceedings of the 2020 59th IEEE Conference on Decision and Control (CDC): ; ,2278-2284.
[69] Roudneshin, M.; Arabneydi, J.; Aghdam, A.G.; Reinforcement learning in nonzero-sum Linear Quadratic deep structured games: Global convergence of policy optimization; Proceedings of the 2020 59th IEEE Conference on Decision and Control (CDC): ; ,512-517.
[70] Shi, Y.; Zhang, B.; Multi-agent reinforcement learning in Cournot games; Proceedings of the 2020 59th IEEE Conference on Decision and Control (CDC): ; ,3561-3566.
[71] Sohet, B.; Hayel, Y.; Beaude, O.; Jeandin, A.; Learning Pure Nash Equilibrium in Smart Charging Games; Proceedings of the 2020 59th IEEE Conference on Decision and Control (CDC): ; ,3549-3554.
[72] Sinha, A.; Mechanism Design with Allocative, Informational and Learning Constraints; Ph.D. Thesis: 2017; .
[73] Zhou, X.; On the Fenchel duality between strong convexity and Lipschitz continuous gradient; arXiv: 2018; .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.