×

Influences of interface properties on the wave propagation in the dipolar gradient elastic solid. (English) Zbl 1428.74032

Summary: The present work mainly focuses on the influence of interface material parameters, namely the interface mass density, the interface elastic rigidity, and the interface inertial interaction constants, on the reflection and transmission behavior of elastic wave propagating through dipolar gradient elastic solids. First, the interface kinetic energy density and interface deformation energy density are taken into account. By application of Hamilton’s variation principle, the governing equations and the boundary conditions of the dipolar gradient elastic solid are obtained. Due to the consideration of microstructure effects of the material, the interface conditions can be proposed in different forms. These interfacial conditions which include the microstructure effects and interface energy effects are then used to determine the amplitude ratio of reflection and transmission waves. A numerical example is provided for the generalized internal roller interface. The influence of the interface material parameters upon the reflection and transmission coefficients in terms of energy fluxes ratio is discussed based on the numerical results. It is revealed that the reflection and transmission behavior can be manipulated by the elaborated design of the interface at both the macroscale and the microscale.

MSC:

74A50 Structured surfaces and interfaces, coexistent phases
74A35 Polar materials
74J15 Surface waves in solid mechanics
Full Text: DOI

References:

[1] Andreaus, U., dell’Isola, F., Giorgio, I., Placidi, L., Lekszycki, T., Rizzi, N.L.: Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity. Int. J. Eng. Sci. 108, 34-50 (2016) · Zbl 1423.74089 · doi:10.1016/j.ijengsci.2016.08.003
[2] Duan, H.L., Wang, J., Huang, Z.P., Karihaloo, B.L.: Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. J. Mech. Phys. Solids 53, 1574-1596 (2005) · Zbl 1120.74718 · doi:10.1016/j.jmps.2005.02.009
[3] Dell’Isola, F., Madeo, A., Placidi, L.: Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D Continua. ZAMM-Z. Angew. Math. Mech. 92, 52-71 (2012) · Zbl 1247.74031 · doi:10.1002/zamm.201100022
[4] Georgiadis, H.G., Vardoulakis, I., Lykotrafitis, G.: Torsional surface waves in a gradient-elastic half-space. Wave Motion 31, 333-348 (2000) · Zbl 1074.74567 · doi:10.1016/S0165-2125(99)00035-9
[5] Georgiadis, H.G.: The Mode III Crack Problem in microstructured solids governed by dipolar gradient elasticity: static and dynamic analysis. ASME J. Appl. Mech. 70, 517-530 (2003) · Zbl 1110.74453 · doi:10.1115/1.1574061
[6] Georgiadis, H.G., Vardoulakis, I., Velgaki, E.G.: Dispersive Rayleigh-wave propagation in microstructured solids characterized by dipolar gradient elasticity. J. Elast. 74, 17-45 (2004) · Zbl 1058.74045 · doi:10.1023/B:ELAS.0000026094.95688.c5
[7] Gourgiotis, P.A., Georgiadis, H.G., Neocleous, I.: On the reflection of waves in half-spaces of microstructured materials governed by dipolar gradient elasticity. Wave Motion 50, 437-455 (2013) · Zbl 1454.74075 · doi:10.1016/j.wavemoti.2012.10.004
[8] Li, Y.Q., Wei, P.J.: Reflection and transmission of plane waves at the interface between two different dipolar gradient elastic half-spaces. Int. J. Solids Struct. 56-57, 194-208 (2015) · doi:10.1016/j.ijsolstr.2014.11.015
[9] Li, Y.Q., Wei, P.J., Tang, Q.H.: Reflection and transmission of elastic waves at the interface between two gradient-elastic solids with surface energy. Eur. J. Mech. A Solids 52, 54-71 (2015) · Zbl 1406.74350 · doi:10.1016/j.euromechsol.2015.02.001
[10] Li, Y.D., Lee, K.Y.: Effect of an imperfect interface on the SH wave propagating in a cylindrical piezoelectric sensor. Ultrasonics 50, 473-478 (2010) · doi:10.1016/j.ultras.2009.10.006
[11] Li, P., Jin, F.: Excitation and propagation of shear horizontal waves in a piezoelectric layer imperfectly bonded to a metal or elastic substrate. Acta Mech. 226, 267-284 (2015) · Zbl 1323.74030 · doi:10.1007/s00707-014-1181-6
[12] Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51-78 (1964) · Zbl 0119.40302 · doi:10.1007/BF00248490
[13] Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139-147 (2000) · doi:10.1088/0957-4484/11/3/301
[14] Murdoch, A.I.: The propagation of surface waves in bodies with material boundaries. J. Mech. Phys. Solids 24, 137-146 (1976) · Zbl 0342.73017 · doi:10.1016/0022-5096(76)90023-5
[15] Nyayadhish, V.B.: Elastic shear waves in the presence of couple stresses. Acta Phys. Acad. Sci. Hung. Tomus 41, 19-27 (1976) · doi:10.1007/BF03157426
[16] Placidi, L., Rosi, G., Giorgio, I., Madeo, A.: Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math. Mech. Solids 19, 555-578 (2013) · Zbl 1305.74047 · doi:10.1177/1081286512474016
[17] Parfitt, V.R., Eringen, A.C.: Reflection of plane waves from the flat boundary of a micropolar half-space. J. Acoust. Soc. Am. 45, 1258-1272 (1969) · doi:10.1121/1.1911598
[18] Nagy, P.B.: Ultrasonic classification of imperfect interfaces. J. Nondestruct. Eval. 11, 127-139 (1992) · doi:10.1007/BF00566404
[19] Rosi, G., Placidi, L., Nguyen, V.H., Salah, N.: Wave propagation across a finite heterogeneous interphase modeled as an interface with material properties. Mech. Res. Commun. 84, 43-48 (2017) · doi:10.1016/j.mechrescom.2017.06.004
[20] Tomar, S.K., Gogna, M.L.: Reflection and refraction of longitudinal wave at an interface between two micropolar elastic solids at welded contact. J. Acoust. Soc. Am. 97, 822-830 (1995) · Zbl 0825.73154 · doi:10.1121/1.413086
[21] Tomar, S.K., Garg, M.: Reflection and transmission of waves from a plane interface between two microstretch solid half-spaces. Int. J. Eng. Sci. 43, 139-169 (2005) · Zbl 1211.74137 · doi:10.1016/j.ijengsci.2004.08.006
[22] Vardoulakis, I., Georgiadis, H.G.: SH surface waves in a homogeneous gradient-elastic half-space with surface energy. J. Elast. 47, 147-165 (1997) · Zbl 0912.73016 · doi:10.1023/A:1007433510623
[23] Yerofeyev, V.I., Sheshenina, O.A.: Waves in gradient-elastic medium with surface energy. J. Appl. Math. Mech. 69, 57-59 (2005) · Zbl 1100.74512 · doi:10.1016/j.jappmathmech.2005.01.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.