×

Polar foliations of symmetric spaces. (English) Zbl 1311.53025

The author studies polar foliations of symmetric spaces. Throughout the paper, \(M\) is a simply connected non-negatively curved symmetric space while \(\mathcal{F}\) is a polar foliation on \(M\). The main results are contained in the following theorems.
Theorem. 1.1. If \(M\) is irreducible and codim \(\mathcal{F}\geq 3\), then either the leaves are single points, or \(\mathcal{F}\) is hyperpolar, or \(M\) is of rank one:
Theorem. 1.2. One has a splitting \(M = M_{-1}\times M_0\times{M_1}\times\cdots\times M_l\), \(\mathcal{F}\) is a product of polar foliations \(\mathcal{F}_i\) on \(M_i\), \(\mathcal{F}_{-1}\) is a foliation by the fibers of the projection of \(M_{-1}\) onto a direct factor, \(\mathcal{F}_0\) is hyperpolar and, for \(i\geq 1\), the sections of \(\mathcal{F}_i\) have constant positive sectional curvature; moreover, if \(i\geq 1\) and codim \(\mathcal{F}_i\geq 3\) in \(M_i\), then \(M_i\) is irreducible and of rank one, and \(\mathcal{F}_i\) lifts to a polar foliation of a round sphere.

MSC:

53C12 Foliations (differential geometric aspects)
53C35 Differential geometry of symmetric spaces

References:

[1] Alexandrino M.: Singular Riemannian foliations with sections.. Illinois Journal of Mathematics , 48, 1163-1182 (2004) · Zbl 1069.53030
[2] M. Alexandrino and D. Töben. Singular Riemannian foliations on simply connected spaces. Differential Geometry and its Applications, 24 (2006), 383-397 · Zbl 1099.53023
[3] M. Bridson and A. Haefliger. Metric spaces of non-positive curvature. Grundlehren der Mathematischen Wissenschaften, Vol. 319, Springer (1999) · Zbl 0988.53001
[4] K. Burns and R. Spatzier. On topological Tits buidlings and their classification. Publications Mathmatiques de IHES, 65 (1987), 5-34 · Zbl 0643.53036
[5] T. Cecil, Q. Chi, and G. Jensen. Isoparametric hypersurfaces with four principal curvature. Annals of Mathematics, 166 (2007), 1-76 · Zbl 1143.53058
[6] Christ U.: Homogeneity of equifocal submanifolds. Journal of Differential Geometry , 62, 1-15 (2002) · Zbl 1071.53531
[7] R. Charney and A. Lytchak. A metric characterization of spherical and euclidean buildings. Geometry and Topology, 5 (2001), 521-550 · Zbl 1002.51008
[8] B. Chen and T. Nagano. Totally geodesic submanifolds of symmetric spaces II. Duke Mathematical Journal, 45 (1978), 405-425 · Zbl 0384.53024
[9] M. Davis. Lectures on orbifolds and reflection groups. Higher Education Press, Springer-Verlag, New York (2010), pp. 63-93 · Zbl 1273.57018
[10] M. Dominguez-Vazquez. Isoparametric foliations on complex projective spaces. Transactions of the American Mathematical Society (2012) (to appear) · Zbl 0911.53034
[11] Ewert H.: A splitting theroem for equifocal submanifolds in simpy connected symmetric spaces. Proceeding of the American Mathematical Society, 126, 2443-2452 (1998) · Zbl 0911.53034 · doi:10.1090/S0002-9939-98-04328-7
[12] F. Fang, K. Grove, and G. Thorbergsson. Tits geometry and positive curvature (2012) (preprint) · Zbl 1421.53056
[13] D. Ferus, H. Karcher, and H. F. Muenzner. Cliffordalgebren and neue isoparametrische Hyperflaechen. Mathematische Zeitschrift, 177 (1981), 479-502 · Zbl 0443.53037
[14] T. Grundhofer, H. van Maldeghem, L. Kramer, and R. Weiss. Compact totally disconnected Moufang buildings. Tohoku Mathematical Journal, 64 (2012), 333 · Zbl 1269.20024
[15] E. Heintze and X. Liu. Homogeneity of infinite-dimensional isoparametric submanifolds. Annals of Mathematics, 149 (1999), 149-181 · Zbl 0931.53027
[16] Immervoll S.: Isoparametric submanifolds and smooth generalized quadrangles. Journal für die reine und angewandte Mathematik , 554, 1-17 (2003) · Zbl 1215.53053 · doi:10.1515/crll.2003.005
[17] Immervoll S.: On the classification of isoparametric hypersurfaces with four distinct principal curvature. Annals of Mathematics, 168, 1011-1024 (2008) · Zbl 1176.53057 · doi:10.4007/annals.2008.168.1011
[18] B. Kleiner and B. Leeb. Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings. Publications Mathématiques de Institut des hautes tudes scientifiques, 86 (1998), 115- 197 · Zbl 0910.53035
[19] L. Kramer and A. Lytchak. Homogeneous compact geometries. Transformation Groups (2012) (accepted) · Zbl 1309.51003
[20] A. Kollross and A. Lytchak. Polar actions of symmetric spaces of higher rank. Bulletin of the London Mathematical Society, 45 (2013), 341-350 · Zbl 1276.53061
[21] A. Kollross. A classification of hyperpolar and cohomogeneity one actions. Transactions of the American Mathematical Society, 354 (2002), 571-612 · Zbl 1042.53034
[22] Kollross A.: Polar actions on symmetric spaces.. Differential Geometry, 77, 425-482 (2009) · Zbl 1139.53025
[23] A. Lytchak and G. Thorbergsson. Curvature explosion in quotients and applications. Differential Geometry, 85 (2010), 117-140 · Zbl 1221.53067
[24] Lytchak A.: Geometric resolution of singular riemannian foliations. Geometriae Dedicata, 149, 379-395 (2010) · Zbl 1207.53035 · doi:10.1007/s10711-010-9488-5
[25] M. Munteanu and K. Tapp. On totally geodesic foliations and doubly ruled surfaces in a compact Lie group. Proceeding of the American Mathematical Society, 41 (2011), 1-22 · Zbl 1235.53027
[26] Muenzner H.F.: Isoparametrische Hyperflaechen in Sphaeren, I. Mathematische Annalen , 251, 57-71 (1980) · Zbl 0417.53030 · doi:10.1007/BF01420281
[27] H. F. Muenzner. Isoparametrische Hyperflaechen in Sphaeren, II. Mathematische Annalen , 256 (1981), 215-232 · Zbl 1215.53053
[28] T. Nagano. The involutions on compact symmetric spaces II. Tokyo Journal of Mathematics , 15 (1992), 39-82 · Zbl 0779.53036
[29] A. Neumaeir. Some sporadic geometries related to PG(3,2). Archiv der Mathematik (Basel), 42 (1984), 89 · Zbl 1139.53025
[30] F. Podestà and G. Thorbergsson. Polar actions on rank one symmetric spaces. Journal of Differential Geometry, 53 (1999), 131-175 · Zbl 1040.53071
[31] S. Stolz. Multiplicities of Dupin hypersurfaces. Inventiones Mathematicae, 138 (1999), 253-279 · Zbl 0944.53035
[32] C.-L. Terng. Isoparametric submanifolds and their Coxeter groups. Journal of Differential Geometry, 21 (1985), 79-107 · Zbl 0615.53047
[33] G. Thorbergsson. Isoparametric foliations and their buildings. Annals of Mathematics, (2)133 (1991), 429-446 · Zbl 0727.57028
[34] G. Thorbergsson. A survey on isoparametric hypersurfaces and their generalizations. In: Handbook of Differential Geometry, Vol. I, Chap. 10. Elsevier Science, London (2000) · Zbl 0979.53002
[35] G. Thorbergsson. Singular Riemannian foliations and isoparametric submanifolds. Milan Journal of Mathematics, 78 (2010), 355-370 · Zbl 1205.53040
[36] J. Tits. Buildings of spherical type and finite BN-pairs. In: Lecture Notes in Mathematics, Vol. 386 (1974) · Zbl 0295.20047
[37] D. Toeben. Parallel focal structure and singular Riemannian foliation. Transactions of the American Mathematical Society, 358 (2006), 1677-1704 · Zbl 1085.53021
[38] C.-L. Terng and G. Thorbergsson. Submanifold geometry in symmetric spaces. Journal of Differential Geometry, (3)42 (1995), 665-718 · Zbl 0845.53040
[39] B. Wilking. A duality theorem for Riemannian foliations in non-negative curvature. Geometric and Functional Analysis, 17 (2007), 1297-1320 · Zbl 1139.53014
[40] W. Ziller. The free loop space of globally symmetric spaces. Inventiones Mathematicae, 41 (1977), 1-22 · Zbl 0338.58007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.