×

The topology of moduli spaces of free group representations. (English) Zbl 1200.14093

Let \(G\) be a complex affine reductive group, with compact real form \(K\). As is well known, \(G\) deformation retracts to \(K\).
This paper concerns the Geometric Invariant Theory quotient \(\mathfrak{X}_r(G)\) of the Cartesian power \(G^r\) by diagonal \(G\)-conjugation, and the corresponding quotient \(\mathfrak{X}_r(K)\) of \(K^r\) by diagonal \(K\)-conjugation. The powers \(G^r\) (respectively \(K^r\)) are equivalently described as the spaces of representations of a rank \(r\) free group \(\mathbb{F}_r\) into \(G\) (respectively \(K\)). Clearly \(\mathsf{Hom}(\mathbb{F}_r,G)\approx G^r\) deformation retracts to \(\text{Hom}(\mathbb{F}_r,K)\approx K^r\).
The main result is that the quotient \(\mathfrak{X}_r(G)\) deformation retracts to the quotient \(\mathfrak{X}_r(K)\). Using this the authors show that \(SL(n,\mathbb{C})\)-character variety is homotopy-equivalent to \(S^8\) when \(n=3, r=2\), and homotopy-equivalent to \(S^6\) when \(n=2, r=3\). For \(n=2\), the main result is due to S. Bradholdt and D. Cooper [Rend. Ist. Mat. Univ. Trieste 32, Suppl. 1, 45–53 (2001; Zbl 1062.14505)]. A similar result is proved when \(\mathbb{F}_r\) is replaced by a free abelian group, but counterexamples are given for other finitely generated groups. The result also enables a complete determination of the Poincaré polynomial of \(\mathfrak{X}_r(SL(2,\mathbb{C})\).
The paper is nicely written, and achieves a pleasant balance between the commutative algebra and the topology.

MSC:

14L24 Geometric invariant theory
14L30 Group actions on varieties or schemes (quotients)
20E05 Free nonabelian groups
14D20 Algebraic moduli problems, moduli of vector bundles
20F29 Representations of groups as automorphism groups of algebraic systems
20G20 Linear algebraic groups over the reals, the complexes, the quaternions
57M07 Topological methods in group theory

Citations:

Zbl 1062.14505

References:

[1] Atiyah, M.F., Bott, R.: The Yang–Mills equations over Riemann surfaces. Philos. Trans. R. Soc. Lond. Ser. A 308(1505), 523–615 (1983). MR MR702806 (85k:14006) · Zbl 0509.14014
[2] Agnihotri, S., Woodward, C.: Eigenvalues of products of unitary matrices and quantum Schubert calculus. Math. Res. Lett. 5(6), 817–836 (1998). MR MR1671192 (2000a:14066) · Zbl 1004.14013
[3] Baird, T.: Moduli spaces of flat G-bundles over nonorientable surfaces. Doctoral thesis, University of Toronto (2007)
[4] Borel, A.: Linear algebraic groups W. A. Benjamin, Inc., New York-Amsterdam, pp. xi+398 (1969). MR MR0251042 (40 #4273)
[5] Bratholdt, S., Cooper, D.: On the topology of the character variety of a free group. Rend. Istit. Mat. Univ. Trieste 32(suppl. 1), 45–53 (2002) [Dedicated to the memory of Marco Reni. MR MR1889465 (2003d:14072) (2001)] · Zbl 1062.14505
[6] Bochnak, J., Coste, M., Roy, M.-F.: Real algebraic geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36. Springer, Berlin (1998) [Translated from the 1987 French original, Revised by the authors. MR MR1659509 (2000a:14067)] · Zbl 0912.14023
[7] Bradlow S., García-Prada O., Gothen P.: Homotopy groups of moduli spaces of representations. Topology 47(4), 203–224 (2008) · Zbl 1165.14028 · doi:10.1016/j.top.2007.06.001
[8] Culler, M., Shalen, P.B.: Varieties of group representations and splittings of 3-manifolds. Ann. Math. (2) 117(1), 109–146 (1983). MR MR683804 (84k:57005) · Zbl 0529.57005
[9] Duistermaat, J.J., Kolk, J.A.C.: Lie Groups, Universitext. Springer, Berlin (2000). MR MR1738431 (2001j:22008) · Zbl 0955.22001
[10] Dolgachev, I.: Lectures on invariant theory. London Mathematical Society Lecture Note Series, vol. 296. Cambridge University Press, Cambridge (2003). MR MR2004511 (2004g:14051) · Zbl 1023.13006
[11] Desale, U.V., Ramanan, S.: Poincaré polynomials of the variety of stable bundles. Math. Ann. 216(3), 233–244 (1975). MR MR0379497 (52 #402) · Zbl 0317.14005
[12] Daskalopoulos, G., Wentworth, R.: Cohomology of \({SL(2, \mathbb{C})}\) character varieties of surface groups and the action of the Torelli group (2008) arXiv:0808.0131 · Zbl 1213.57021
[13] Florentino, C.A.A.: Invariants of 2 {\(\times\)} 2 matrices, irreducible \({{\mathrm SL}(2,{\mathbb{C}})}\) characters and the Magnus trace map. Geom. Dedicata 121, 167–186 (2006). MR MR2276242 (2007k:14093) · Zbl 1103.14025
[14] Goldman, W.M.: Trace coordinates on fricke spaces of some simple hyperbolic surfaces. In: Papadopoulos, A. (ed.) Handbook of Teichmüller Theory II. EMS Publishing House, Zürich (2008)
[15] Goldman, W.M.: Complex hyperbolic geometry. Oxford Mathematical Monographs. Oxford Science Publications, xx+316 pp. The Clarendon Press, Oxford University Press, New York (1999). ISBN: 0-19-853793-X MR 30F45 51M10 57M50
[16] Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002). MR MR1867354 (2002k:55001) · Zbl 1044.55001
[17] Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. London Math. Soc. (3) 55(1), 59–126 (1987). MR MR887284 (89a:32021) · Zbl 0634.53045
[18] Hausel, T., Rodriguez-Villegas, F.: Mixed hodge polynomials of character varieties, arXiv:math/ 0612668
[19] Huebschmann, J.: Kähler spaces, nilpotent orbits, and singular reduction. Mem. Am. Math. Soc. 172(814), vi+96 (2004). MR MR2096203 (2006i:53112) · Zbl 1070.53052
[20] Huebschmann, J.: Singular Poisson-Kähler geometry of certain adjoint quotients. Geometry and topology of manifolds, Banach Center Publ., vol. 76, pp. 325–347. Polish Acad. Sci., Warsaw (2007). MR MR2346967 · Zbl 1209.53064
[21] Jeffrey, L.C., Weitsman, J.: Bohr-Sommerfeld orbits in the moduli space of flat connections and the Verlinde dimension formula. Comm. Math. Phys. 150(3), 593–630 (1992). MR MR1204322 (94g:58085) · Zbl 0787.53068
[22] Kirwan, F.C.: Cohomology of quotients in symplectic and algebraic geometry. Mathematical Notes, vol. 31. Princeton University Press, Princeton (1984). MR MR766741 (86i:58050) · Zbl 0553.14020
[23] Kempf, G., Ness, L.: The length of vectors in representation spaces. Algebraic Geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen 1978). Lecture Notes in Math., vol. 732, pp. 233–243. Springer, Berlin (1979). MR MR555701 (81i:14032) · Zbl 0407.22012
[24] Knapp, A.W.: Lie groups beyond an introduction. Progress in Mathematics, 2nd edn., vol. 140. Birkhäuser Boston Inc., Boston (2002). MR MR1920389 (2003c:22001) · Zbl 1075.22501
[25] Lawton, S.: Generators, relations and symmetries in pairs of 3 {\(\times\)} 3 unimodular matrices. J. Algebra 313(2), 782–801 (2007). MR MR2329569 · Zbl 1119.13004
[26] Lawton S.: Poisson geometry of \({{\mathrm SL}(3, \mathbb{C})}\) -character varieties relative to a surface with boundary. Trans. Am. Math. Soc. 361, 2397–2429 (2009) · Zbl 1171.53052 · doi:10.1090/S0002-9947-08-04777-6
[27] Luft, E.: On contractible open topological manifolds. Invent. Math. 4, 192–201 (1967). MR MR0221486 (36 #4538) · Zbl 0158.42301
[28] Luna, D.: Sur certaines opérations différentiables des groupes de Lie. Am. J. Math. 97, 172–181 (1975). MR MR0364272 (51 #527) · Zbl 0334.57022
[29] Luna, D.: Fonctions différentiables invariantes sous l’opération d’un groupe réductif. Ann. Inst. Fourier (Grenoble) 26(1), 33–49 (1976). MR MR0423398 (54 #11377) · Zbl 0315.20039
[30] Mumford, D., Fogarty, J., Kirwan, F.: Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 3rd edn., vol. 34. Springer, Berlin (1994). MR MR1304906 (95m:14012) · Zbl 0797.14004
[31] Mumford, D.: The red book of varieties and schemes, expanded ed. Lecture Notes in Mathematics, vol. 1358. Springer, Berlin (1999) [Includes the Michigan lectures (1974) on curves and their Jacobians, With contributions by Enrico Arbarello. MR MR1748380 (2001b:14001)] · Zbl 0945.14001
[32] Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 5(1), 121–130 (1974). MR MR0402819 (53 #6633) · Zbl 0327.58005
[33] Nagata, M.: Invariants of a group in an affine ring. J. Math. Kyoto Univ. 3, 369–377 (1963/1964). MR MR0179268 (31 #3516) · Zbl 0146.04501
[34] Neeman, A.: The topology of quotient varieties. Ann. Math. (2) 122(3), 419–459 (1985). MR MR819554 (87g:14010) · Zbl 0692.14032
[35] Narasimhan, M.S., Seshadri, C.S.: Holomorphic vector bundles on a compact Riemann surface. Differential Analysis, pp. 249–250. Bombay Colloq., Oxford Univ. Press, London (1964). MR MR0182985 (32 #467) · Zbl 0122.16701
[36] Procesi, C.: The invariant theory of n {\(\times\)} n matrices. Adv. Math. 19(3), 306–381 (1976). MR MR0419491 (54 #7512) · Zbl 0331.15021
[37] Procesi, C., Schwarz, G.: Inequalities defining orbit spaces. Invent. Math. 81(3), 539–554 (1985). MR MR807071 (87h:20078) · Zbl 0578.14010
[38] Schwarz, G.W.: The topology of algebraic quotients. Topological methods in algebraic transformation groups (New Brunswick, NJ 1988). Progr. Math., vol. 80, pp. 135–151. Birkhäuser Boston, Boston (1989). MR MR1040861 (90m:14043)
[39] Shafarevich, I.R.: Basic Algebraic Geometry, vol. 2. Springer, Berlin (1994). MR MR1328834 (95m:14002) · Zbl 0797.14001
[40] Sikora, A.S.: Quantizations of character varieties and quantum knot invariants (2008) arXiv: 0807.0943v1
[41] Sjamaar, R., Lerman, E.: Stratified symplectic spaces and reduction. Ann. Math. (2) 134(2), 375–422 (1991). MR MR1127479 (92g:58036) · Zbl 0759.58019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.