×

On ordinary differential equations admitting a finite linear group of symmetries. (English) Zbl 0910.34043

The authors give usefull applications of finite linear symmetry or orbital symmetry groups to reductions of autonomous systems of differential equations \(\dot x=f(x)\), \(x\in \mathbb{R}^n\). An orbital symmetry is a transformation of this equation to a new equation \(\dot x=\mu \cdot f(x)\), which has the same orbit structure of solutions.
The key is the use of invariants resp relative invariants corresponding to characters of the finite linear orbital symmetry group \(G\). Using the invariants one may construct a polynomial map which transfers the equation to block form with more informations on the structure of the solution space. Many instructive examples are given.

MSC:

34C20 Transformation and reduction of ordinary differential equations and systems, normal forms
17B05 Structure theory for Lie algebras and superalgebras
17B45 Lie algebras of linear algebraic groups
Full Text: DOI

References:

[1] Abud, M.; Sartori, G., The geometry of spontaneous symmetry breaking, Ann. Physics, 150, 307-372 (1983) · Zbl 0529.58028
[2] Abud, M.; Sartori, G., The geometry of orbit-space and natural minima of Higgs potentials, Phys. Lett. B, 104, 147-152 (1981)
[3] Bruno, A. D., Local Methods in Nonlinear differential Equations (1989), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0674.34002
[4] Chossat, P., Forced reflectional symmetry breaking of an \(O\), Nonlinearity, 6, 723-731 (1993) · Zbl 0784.58052
[5] Cox, D.; Little, J.; O’Shea, D., Ideals, Varieties, and Algorithms. Ideals, Varieties, and Algorithms, Undergrad. Texts Math. (1992), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0756.13017
[6] Gaeta, G., Nonlinear Symmetries and Nonlinear Equations (1994), Kluwer Academic: Kluwer Academic Dordrecht · Zbl 0813.58002
[7] Golubitsky, M.; Schaeffer, D. G., Singularities and Groups in Bifurcation Theory. Singularities and Groups in Bifurcation Theory, Applied Math. Sci. Ser., 51 (1985), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0607.35004
[8] Golubitsky, M.; Stewart, I.; Schaelfer, D. G., Singularities and Groups in Bifurcation Theory. Singularities and Groups in Bifurcation Theory, Applied Math. Sci. Ser., 69 (1988), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0691.58003
[9] Gröbner, W.; Knapp, H., Contributions to the Method of Lie Series (1967), Bibliograph. Inst: Bibliograph. Inst Mannheim · Zbl 0168.33001
[10] Hofbauer, J.; Sigmund, K., The Theory of Evolution and Dynamical Systems (1988), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0678.92010
[11] Jaric, M.; Michel, L.; Sharp, R., Zeros of covariant vector fields for the point groups: Invariant formulation, J. Physique, 45, 1-27 (1984)
[12] Kasner, E., Solution of the Einstein equations involving functions of only one variable, Trans. Amer. Math. Soc., 27, 155-162 (1925) · JFM 51.0708.01
[13] Luna, D., Fonctions differentiables invariantes sons l’operation d’un group reductif, Ann. Inst. Fourier, 26, 33-49 (1976) · Zbl 0315.20039
[14] Olver, P. J., Applications of Lie Groups to Differential Equations. Applications of Lie Groups to Differential Equations, Graduate Texts in Math., 107 (1986), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0588.22001
[15] Sansone, G.; Conti, R., Nonlinear Differential Equations (1964), Pergamon: Pergamon Elmsford · Zbl 0128.08403
[16] Schwarz, G. W., The topology of algebraic quotients, (Kraft, H., Topological Methods in Algebraic Transformation Groups (1989), Birkhäuser: Birkhäuser Basel), 135-151 · Zbl 0708.14034
[17] Springer, T. A., Invariant Theory. Invariant Theory, Lecture Notes in Math., 585 (1977), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0346.20020
[18] Sturmfels, B., Algorithms in Invariant Theory (1993), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0802.13002
[19] Walcher, S., Symmetries of ordinary differential equations, Nova J. Alg. Geom., 2, 245-275 (1993) · Zbl 0872.58056
[20] Walcher, S., On sums of vector fields, Results in Math., 31, 161-169 (1997) · Zbl 0897.35003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.