×

Integral operators and dual orthogonal systems on a half-line. (English) Zbl 1024.45004

Summary: A generalized Laplace transformation \(\mu\mapsto W_{\theta,\mu}\), on the set of probability measures on \(\mathbb{R}_+\), is introduced. The kernel of the transformation is chosen to be \(\widetilde w_\theta (zs)={_0 F_1} (\theta+1; zs)\) \((_0F_1\) is the hypergeometric function, \(\theta>-1\), \(s\in \mathbb{R}_+\), \(x\in\mathbb{C})\). A family of measures \({\mathcal M}_\theta= \{\mu:W_{\theta, \mu}\in {\mathcal L}\}\), where \({\mathcal L}\) stands for the set of Laguerre entire functions, is studied. The set \({\mathcal L}\) consists of polynomials with real nonpositive zeros only, as well as of their uniform limits on compact subsets of \(\mathbb{C}\). The set \({\mathcal M}_\theta\) contains, among others, the Euler measure \(d \gamma_\theta= (s^\theta/ \Gamma(\theta+1)) \exp(-s)ds\) and the Dirac measures \(\delta_x\), \(x\in\mathbb{R}_+\) which play a peculiar role in the Urbanik algebras defined by the transformation \(\mu\mapsto W_{\theta,\mu}\).
A sufficient condition for the measures \(d\mu(s)= C_\theta s^\theta \exp(-\Phi(s)) ds\) to belong to \({\mathcal M}_\theta\), is given. For \(\mu\in{\mathcal M}_\theta\), integral operators with the kernels \(K^\mu_\theta (z,s)= w_\theta(zs)/W_{\theta, \mu}(z)\), acting in the real Hilbert spaces \(L^2(\mathbb{R}_+, d\mu)\), are studied. In particular, dual orthogonal systems of Appell polynomials are constructed.

MSC:

45P05 Integral operators
42C15 General harmonic expansions, frames
35K05 Heat equation
35A22 Transform methods (e.g., integral transforms) applied to PDEs
Full Text: DOI

References:

[1] DOI: 10.1006/jfan.1996.0067 · Zbl 0868.60041 · doi:10.1006/jfan.1996.0067
[2] Barbulyak L.V., Mat. Studii 3 pp 67– (1994)
[3] Bateman H., Higher Transcendental Functions 2 (1953)
[4] DOI: 10.1016/S0034-4877(97)84882-3 · Zbl 0887.60047 · doi:10.1016/S0034-4877(97)84882-3
[5] DOI: 10.1007/BF02509620 · Zbl 0957.46031 · doi:10.1007/BF02509620
[6] DOI: 10.1007/BF01077052 · Zbl 0853.43014 · doi:10.1007/BF01077052
[7] Berezansky Yu.M., Meth. Func. Anal. Topol. 2 pp 1– (1996)
[8] DOI: 10.1515/9783110877595 · doi:10.1515/9783110877595
[9] Boas R.P., Polynomial Expansions of Analytic Functions (1958) · Zbl 0082.05702
[10] Daletsky Yu.L., Func. Anal. Appl. 25 pp 68– (1991)
[11] DOI: 10.1017/CBO9780511566158 · doi:10.1017/CBO9780511566158
[12] Hida T., An Infinite Dimensional Calculus (1993) · Zbl 0771.60048
[13] Iliev L., Laguerre Entire Function (1987) · Zbl 0691.30001
[14] Kachanovsky N.A., Methods of Func. Anal, and Topology pp 36– (1987)
[15] DOI: 10.1007/BF02391808 · Zbl 0121.12803 · doi:10.1007/BF02391808
[16] Kondratiev Yu.G., Generalized Appell Systems (1996)
[17] Kondratiev Yu.G., Hiroshima Math. J. 28 pp 213– (1998)
[18] Kozitsky Yu., Laguerre entire functions and related locally convex spaces (1999)
[19] DOI: 10.5802/aif.599 · Zbl 0315.20039 · doi:10.5802/aif.599
[20] Thu Nguyen Van, Nagoya Math. J. 133 pp 155– (1994)
[21] Urbanik K., Studia Math. 23 pp 217– (1964)
[22] Us G.F., Methods of Func. Anal, and Topology 1 pp 93– (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.