×

Odd Pfaffian forms. (English) Zbl 1480.58001

The authors define a volume form called the odd Pfaffian through a certain invariant polynomial with integral coefficients in the curvature tensor. Moreover, some applications are provided to illustrate the theoretical results.

MSC:

58A10 Differential forms in global analysis
58A17 Pfaffian systems
53C05 Connections (general theory)
57R18 Topology and geometry of orbifolds

References:

[1] Albin, P., A renormalized index theorem for some complete asymptotically regular metrics: the Gauss-Bonnet theorem, Adv. Math., 213, 1, 1-52 (2007) · Zbl 1195.58008 · doi:10.1016/j.aim.2006.11.009
[2] Albin, P., Gell-Redman, J.: The index of Dirac operators on incomplete edge spaces, Symmetry Integrability Geom. Methods Appl., vol. 12, Paper No. 089 (2016) · Zbl 1378.58020
[3] Allendoerfer, C., The Euler number of a Riemannian manifold, Am. J. Math., 62, 243-248 (1940) · JFM 66.0869.04 · doi:10.2307/2371450
[4] Allendoerfer, C.; Weil, A., The Gauss-Bonnet theorem for Riemannian polyhedra, Trans. AMS, 53, 1, 101-129 (1943) · Zbl 0060.38102 · doi:10.1090/S0002-9947-1943-0007627-9
[5] Atiyah, M.; Lebrun, C., Curvature, cones and characteristic numbers, Math. Proc. Camb. Philos. Soc., 155, 1, 13-37 (2013) · Zbl 1273.53041 · doi:10.1017/S0305004113000169
[6] Bär, C.; Gauduchon, P.; Moroianu, A., Generalized cylinders in semi-Riemannian and spin geometry, Math. Z., 249, 3, 545-580 (2005) · Zbl 1068.53030 · doi:10.1007/s00209-004-0718-0
[7] Berline, N.; Getzler, E.; Vergne, M., Heat Kernels and Dirac Operators (1992), Berlin: Springer, Berlin · Zbl 0744.58001 · doi:10.1007/978-3-642-58088-8
[8] Borzelino, J.: Riemannian Geometry of Orbifolds, Dissertation. University of California, Los Angeles, pp. 1-57 (1992)
[9] Bourguignon, J-P; Gauduchon, P., Spineurs, opérateurs de Dirac et variations de métriques, Commun. Math. Phys., 144, 3, 581-599 (1992) · Zbl 0755.53009 · doi:10.1007/BF02099184
[10] Bröcker, L.; Kuppe, M., Integral geometry of tame sets, Geom. Dedicata, 82, 285-323 (2000) · Zbl 1023.53057 · doi:10.1023/A:1005248711077
[11] Brüning, L.; Ma, X., An anomaly formula for Ray-Singer metrics on manifolds with boundary, Geom. Funct. Anal., 16, 4, 767-837 (2006) · Zbl 1111.58024 · doi:10.1007/s00039-006-0574-7
[12] Cheeger, J.; Müller, W.; Schrader, R., On the curvature of piecewise flat spaces, Commun. Math. Phys., 92, 405-454 (1984) · Zbl 0559.53028 · doi:10.1007/BF01210729
[13] Cheeger, J.; Müller, W.; Schrader, R., Kinematic and tube formulas for piecewise linear spaces, Indiana Univ. Math. J., 35, 4, 737-754 (1986) · Zbl 0615.53058 · doi:10.1512/iumj.1986.35.35039
[14] Chern, SS, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds, Ann. Math., 45, 747-752 (1944) · Zbl 0060.38103 · doi:10.2307/1969302
[15] Chern, SS, On the curvature integra in a Riemannian manifold, Ann. Math., 46, 4, 674-684 (1945) · Zbl 0060.38104 · doi:10.2307/1969203
[16] Cibotaru, F., Chern-Gauss-Bonnet and Lefschetz duality from a currential point of view, Adv. Math., 317, 718-757 (2017) · Zbl 1378.58002 · doi:10.1016/j.aim.2017.07.005
[17] Dai, X.; Wei, G., Hitchin-Thorpe inequality for noncompact Einstein 4-manifolds, Adv. Math., 214, 2, 551-570 (2007) · Zbl 1127.53036 · doi:10.1016/j.aim.2007.02.010
[18] Dutertre, N., A Gauss Bonnet formula for closed semi-algebraic sets, Adv. Geom., 8, 33-51 (2008) · Zbl 1222.14124 · doi:10.1515/ADVGEOM.2008.003
[19] Dutertre, N., Euler characteristic and Lipschitz Killing curvatures, Isr. J. Math., 213, 1, 109-137 (2016) · Zbl 1359.32005 · doi:10.1007/s11856-016-1322-9
[20] Fu, J., Curvature measures of subanalytic sets, Am. J. Math., 116, 4, 819-880 (1994) · Zbl 0818.53091 · doi:10.2307/2375003
[21] Gilkey, P., Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem (1995), Boca Raton: CRC Press, Boca Raton · Zbl 0856.58001
[22] Grieser, D., Local geometry of singular real analytic surfaces, Trans. AMS, 355, 1559-1577 (2003) · Zbl 1036.32021 · doi:10.1090/S0002-9947-02-03168-9
[23] Grieser, D., A natural differential operator on conic spaces, Discrete Contin. Dyn. Syst. Suppl., I, 568-577 (2011) · Zbl 1306.58010
[24] Gusein-Zade, SM; Luengo, I.; Melle-Hernandez, A., The universal Euler characteristic of V-manifolds, Funct. Anal. Appl., 52, 297-307 (2018) · Zbl 1423.57042 · doi:10.1007/s10688-018-0239-y
[25] Joshi, M., A model form for exact b-metrics, Proc. AMS, 129, 581-584 (2000) · Zbl 0974.58029 · doi:10.1090/S0002-9939-00-05599-4
[26] Labbi, M.L.: On the Gauss-Bonnet curvatures, Symmetry Integrability Geom. Methods Appl., vol. 3, Paper No. 118 (2007) · Zbl 1133.53026
[27] Mazzeo, R.; Melrose, RB, Pseudodifferential operators on manifolds with fibered boundaries, Asian J. Math., 2, 833-866 (1998) · Zbl 1125.58304 · doi:10.4310/AJM.1998.v2.n4.a9
[28] McMullen, C., The Gauss Bonnet theorem for cone manifolds and volumes of moduli spaces, Am. J. Math., 139, 261-291 (2017) · Zbl 1364.53038 · doi:10.1353/ajm.2017.0005
[29] Melrose, RB; Wunsch, J., Propagation of singularities for the wave equation on conic manifolds, Invent. Math., 156, 235-299 (2004) · Zbl 1088.58011 · doi:10.1007/s00222-003-0339-y
[30] Melrose, RB, The Atiyah-Patodi-Singer Index Theorem. Res. Notes Math (1993), Boca Raton: CRC Press, Boca Raton · Zbl 0796.58050 · doi:10.1201/9781439864609
[31] Moerdijk, I.; Pronk, DA, Simplicial cohomology of orbifolds, Indag. Math., 10, 269-293 (1999) · Zbl 1026.55007 · doi:10.1016/S0019-3577(99)80021-4
[32] Morvan, J-M, Generalized Curvatures, GC (2008), Berlin: Springer, Berlin · Zbl 1149.53001 · doi:10.1007/978-3-540-73792-6
[33] Nicolaescu, L., Lectures on the Geometry of Manifolds (2007), Singapore: World Scientific, Singapore · Zbl 1155.53001 · doi:10.1142/6528
[34] Nicolaescu, L.; Savale, N., The Gauss-Bonnet-Chern theorem: a probabilistic perspective, Trans. AMS, 369, 2951-2986 (2017) · Zbl 1401.35229 · doi:10.1090/tran/6895
[35] Petersen, P., Riemannian Geometry, GTM (2006), New York: Springer, New York · Zbl 1220.53002
[36] Rataj, J.; Zähle, M., Normal cycles of Lipschitz manifolds by approximation with parallel sets, Differ. Geom. Appl., 19, 113-126 (2003) · Zbl 1042.53053 · doi:10.1016/S0926-2245(03)00020-2
[37] Rosenberg, S., On the Gauss-Bonnet theorem for complete manifolds, Trans. AMS, 287, 2, 745-753 (1985) · Zbl 0559.53032 · doi:10.1090/S0002-9947-1985-0768738-0
[38] Satake, I., The Gauss-Bonnet Theorem for V-manifolds, J. Math. Soc. Jpn., 9, 464-492 (1957) · Zbl 0080.37403 · doi:10.2969/jmsj/00940464
[39] Vaillant, B.: Index and spectral theory for manifolds with generalized fibered cusps, Dissertation, Bonner Math. Schriften, vol. 344. Rheinische Friedrich-Wilhelms-Universität Bonn (2001) · Zbl 1059.58018
[40] von Dyck, W., Beiträge zur analysis situs, Math. Ann., 32, 457-512 (1888) · JFM 20.0519.04 · doi:10.1007/BF01443580
[41] Walter, R., A generalized Allendorfer-Weil formula and an inequality of Cohn-Vossen type, J. Differ. Geom., 10, 167-180 (1975) · Zbl 0308.53042 · doi:10.4310/jdg/1214432786
[42] Wu, H., Historical development of Gauss-Bonnet theorem, Sci. China Ser. A Math., 51, 4, 777-784 (2008) · Zbl 1151.53008 · doi:10.1007/s11425-008-0029-8
[43] Zerouali, A., On a Hitchin-Thorpe inequality for manifolds with foliated boundaries, Ann. Math. Qué., 41, 1, 169-197 (2017) · Zbl 1371.53021 · doi:10.1007/s40316-016-0066-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.