×

On a semigroup problem. (English) Zbl 1441.37011

Summary: If \( S \) is a semigroup in \( \mathbb{R}^n \) that is not separated by a linear functional, then it is known that the closure of \( S \) is a group. We investigate a similar statement in an infinite dimensional topological vector space \( X \). We show that if \( X \) is an infinite dimensional Banach space, then there exists a semigroup \( S\subset X \), not separated by the continuous functionals supported by the closed linear span of \( S \), for which the closure of the semigroup is not a group. If \( X \) is an infinite dimensional Fréchet space, then the closure of a semigroup that is not separated is always a group if and only if \( X \) is \( \mathbb{R}^{\omega} \), the countably infinite direct product of lines. Other infinite dimensional topological vector spaces, such as \( \mathbb{R}^{\infty} \), the countably infinite direct sum of lines, are discussed. The Semigroup Problem has applications to the study of certain dynamical systems, in particular for the construction of topologically transitive extensions of hyperbolic systems. Some examples are shown in the paper.

MSC:

37B02 Dynamics in general topological spaces
37B05 Dynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.)
22A15 Structure of topological semigroups

References:

[1] C. R. Adams, The space of functions of bounded variation and certain general spaces, Trans. Amer. Math. Soc., 40, 421-438 (1936) · JFM 62.0463.01 · doi:10.1090/S0002-9947-1936-1501882-8
[2] R. D. Anderson, Hibert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc., 72, 515-519 (1966) · Zbl 0137.09703 · doi:10.1090/S0002-9904-1966-11524-0
[3] C. Bargetz, Completing the Valdivia-Vogt tables of sequence-space representations of spaces of smooth functions and distributions, Monatshefte für Mathematik, 177, 1-14 (2015) · Zbl 1332.46032 · doi:10.1007/s00605-014-0650-2
[4] C. Bessaga; A. Pełczyński; S. Rolewicz, On diametral approximative dimension and linear homogeneity of \(F\)-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 9, 677-683 (1961) · Zbl 0109.33502
[5] P. A. Borodin, Density of a semigroup in a Banach space, Izvestiya: Mathematics, 78, 1079-1104 (2014) · Zbl 1316.46015 · doi:10.1070/im2014v078n06abeh002721
[6] R. Bowen, On Axiom A Diffeomorphisms, Regional Conference Series in Mathematics, No. 35. American Mathematical Society Providence, R.I. 1978. · Zbl 0383.58010
[7] R. Brown; P. J. Higgins; S. A. Morris, Countable products and sums of lines and circles: Their closed subgroups, quotients and duality properties, Math. Proc. Camb. Phil. Soc., 78, 19-32 (1975) · Zbl 0304.22001 · doi:10.1017/S0305004100051483
[8] H. Jarchow, Locally Convex Spaces, Springer, 1981. · Zbl 0466.46001
[9] N. Kalton, Normalization properties of Schauder bases, Proc. London Math.. Soc., 22, 91-105 (1971) · Zbl 0208.14505 · doi:10.1112/plms/s3-22.1.91
[10] N. Kalton, The metric linear spaces \(\begin{document} L_p \end{document}\) for \(\begin{document} 0<p<1 \end{document} \), Contemporary Mathematics, 52, 55-69 (1986) · doi:10.1090/conm/052/840695
[11] N. Kalton, The basic sequence problem, Studia Mathematica, 116, 168-187 (1995) · Zbl 0890.46001 · doi:10.4064/sm-116-2-167-187
[12] J. Lindestrauss and L. Tzafriri, Classic Banach Spaces Ⅰ, Ⅱ, Springer-Verlag, 1977. · Zbl 0362.46013
[13] K. Lui; V. Nitica; S. Venkatesh, The semigroup problem for central semidirect product of \(\begin{document} \mathbb{R}^n \end{document}\) with \(\begin{document} \mathbb{R}^m \end{document} \), Topology Proceedings, 45, 9-29 (2015) · Zbl 1307.22003
[14] P. Mankiewicz, On topological, Lipschitz, and uniform classification of LF-spaces, Studia Math., 54, 109-142 (1974) · Zbl 0328.46005 · doi:10.4064/sm-52-2-109-142
[15] I. Melbourne; V. Nitica; A. Török, Stable transitivity of certain noncompact extensions of hyperbolic systems, Annales Henri Poincaré, 6, 725-746 (2005) · Zbl 1079.22005 · doi:10.1007/s00023-005-0221-0
[16] I. Melbourne; V. Nitica; A. Török, A note about stable transitivity of noncompact extensions of hyperbolic systems, Contin. Dynam. Systems, 14, 355-363 (2006) · Zbl 1098.37027 · doi:10.3934/dcds.2006.14.355
[17] S. A. Morris, Locally compact abelian groups and the variety of topological groups generated by the reals, Proc. Amer. Math. Soc., 34, 290-292 (1972) · Zbl 0222.22005 · doi:10.1090/S0002-9939-1972-0294560-4
[18] V. Nitica; A. Török, Open and dense topological transitivity of extensions by non-compact fiber of hyperbolic systems: a review, Axioms, 4, 84-101 (2015) · Zbl 1376.37073
[19] V. Nitica; A. Török, Stable transitivity of Heisenberg group extensions of hyperbolic systems, Nonlinearity, 27, 661-683 (2014) · Zbl 1353.37060 · doi:10.1088/0951-7715/27/4/661
[20] V. Nitica; M. Pollicott, Transitivity of Euclidean extensions of Anosov diffeomorphisms, Ergodic Theory and Dynamical Systems, 25, 257-269 (2005) · Zbl 1067.37032 · doi:10.1017/S0143385704000471
[21] A. Pietsch, Nuclear Locally Convex Spaces, Ergebnisse Der Mathematick und Ihrer Grensgebiete, Volume 66, Springer-Verlag, New York/Heidelberg/Berlin, 1972. · Zbl 0308.47024
[22] Z. Rosengarten and A. Reich, Transitivity of infinite dimensional extensions of Anosov diffeomorphisms, 2012, arXiv: 1209.2183v1.
[23] W. Rudin, Functional Analysis, second edition, McGraw-Hill, 1991. · Zbl 0867.46001
[24] J. H. Shapiro, On the weak basis theorem in \(F\)-spaces, Canadian J. Math., 26, 1294-1300 (1974) · Zbl 0308.46004 · doi:10.4153/CJM-1974-124-5
[25] E. A. Sidorov, Topologically transitive cylindrical cascades (Russian), Mat. Zametki, 14, 441-452 (1973) · Zbl 0284.54025
[26] T. Silverman and S. M. Miller, Hilbert extensions of Anosov diffeomorpisms, 2013, http://www.math.psu.edu/mass/reu/2013/mathfest/HilbertCounterexample.pdf
[27] J. Wengenroth, Acyclic inductive spectra of Fréchet spaces, Studia Mathematica, 120, 247-258 (19966) · Zbl 0863.46002 · doi:10.4064/sm-120-3-247-258
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.